

WebGL	
 based	
 3D	
 Game	
 Engine	

Master	
 thesis	

Morten	
 Nobel-­‐Jørgensen	

mnob@itu.dk	

	

Supervisors	

Mark	
 Jason	
 Nelson	
 /	
 Daniel	
 Povlsen	

ITU	
 –	
 Games	

Marts	
 2012

	

1 WebGL	
 based	
 3D	
 Game	
 Engine	

Morten	
 Nobel-­‐Jørgensen,	
 Master	
 thesis	
 in	
 Games,	
 IT	
 University	
 of	
 Copenhagen,	
 2012	

Feedback:	
 http://blog.nobel-­‐joergensen.com/2012/03/30/webgl/	
 	

Abstract

With the introduction of WebGL Web
browsers became capable of using
hardware accelerated 3D graphics,
which opened up the possibility of
creating a wide range of applications
including 3D games.

In this thesis I will investigate how a 3D
game engine can be implemented in a
browser using WebGL and JavaScript.

First I will take a look at the
characteristics of JavaScript and
JavaScript engines, by investigating
some techniques and software patterns for writing high performance JavaScript, and then
examine some of the challenges there are when comes to creating 3D games.

To get hands-on experience I have implemented KickJS – a WebGL based 3D game
engine. KickJS is a shader-based engine with a range of built-in shaders. Using the
KickJS engine I have also created a shader editor, a scene editor and several small 3D
demos.

Finally I have benchmarked the raw performance of JavaScript and WebGL. I have
approached this problem from two sides: First comparing JavaScript performance with
C++ performance and then seeing how the rendering performance of KickJS compares
with the Unity game engine.

In general I found that the JavaScript CPU performance is around 2-4 times slower than
C++ based applications. Since much of the calculations are pushed to the GPU, this may
not be an issue for small and medium sized games.

The availability of WebGL makes the WebGL browsers a very attractive platform. I
expect many small and medium sized games to appear on the platform in the near future.

2 WebGL	
 based	
 3D	
 Game	
 Engine	

Morten	
 Nobel-­‐Jørgensen,	
 Master	
 thesis	
 in	
 Games,	
 IT	
 University	
 of	
 Copenhagen,	
 2012	

Feedback:	
 http://blog.nobel-­‐joergensen.com/2012/03/30/webgl/	
 	

Table of content

1	
 Introduction ... 5	

1.1	
 Problem definition ... 5	

1.2	
 A brief history of game engines ... 5	

1.3	
 More than just a runtime-framework ... 6	

1.4	
 The evolution of web applications ... 6	

1.5	
 The future of browser plug-ins .. 7	

1.6	
 Adding a splash of 3D .. 8	

1.7	
 HTML games ... 9	

1.8	
 Summary .. 10	

2	
 JavaScript based game engine ... 11	

2.1	
 Writing efficient and maintainable JavaScript ... 11	

2.2	
 Evaluation of JavaScript as a language for 3D engines ... 16	

2.3	
 Summary .. 27	

3	
 KickJS – a WebGL game engine ... 29	

3.1	
 High-level overview ... 29	

3.2	
 Programming style and documentation ... 29	

3.3	
 Scenegraph, rendering and the game loop ... 30	

3.4	
 Resource management ... 36	

3.5	
 Mesh ... 38	

3.6	
 Serialization ... 41	

3.7	
 Materials and Shaders .. 43	

3.8	
 Input management .. 45	

3.9	
 Math library and the Transform object .. 47	

3.10	
 Future improvements ... 47	

3 WebGL	
 based	
 3D	
 Game	
 Engine	

Morten	
 Nobel-­‐Jørgensen,	
 Master	
 thesis	
 in	
 Games,	
 IT	
 University	
 of	
 Copenhagen,	
 2012	

Feedback:	
 http://blog.nobel-­‐joergensen.com/2012/03/30/webgl/	
 	

3.11	
 Summary .. 50	

4	
 KickJS Editor – A scene editor for KickJS .. 51	

4.1	
 Usability ... 52	

4.2	
 Scene view ... 52	

4.3	
 Property editor ... 52	

4.4	
 Persistence .. 53	

4.5	
 Build and download ... 54	

4.6	
 Future improvements ... 55	

4.7	
 Summary .. 57	

5	
 Benchmark... 58	

5.1	
 JavaScript vs. C++ ... 58	

5.2	
 KickJS vs. Unity .. 61	

5.3	
 Summary .. 67	

6	
 Conclusion ... 68	

7	
 Appendix A: performance tests and other tests ... 69	

7.1	
 JavaScript technique benchmark .. 69	

7.2	
 Other tests .. 70	

8	
 Appendix B: Example applications ... 74	

8.1	
 Snake .. 74	

8.2	
 Model viewer ... 74	

8.3	
 Cloth simulation ... 75	

8.4	
 Video ASCII art ... 76	

9	
 Appendix C: Documentation ... 77	

10	
 Appendix D: UML Class diagram of KickJS ... 79	

11	
 Appendix E: Glossary ... 80	

12	
 Bibliography .. 82	

4 WebGL	
 based	
 3D	
 Game	
 Engine	

Morten	
 Nobel-­‐Jørgensen,	
 Master	
 thesis	
 in	
 Games,	
 IT	
 University	
 of	
 Copenhagen,	
 2012	

Feedback:	
 http://blog.nobel-­‐joergensen.com/2012/03/30/webgl/	
 	

5 WebGL	
 based	
 3D	
 Game	
 Engine	

Morten	
 Nobel-­‐Jørgensen,	
 Master	
 thesis	
 in	
 Games,	
 IT	
 University	
 of	
 Copenhagen,	
 2012	

Feedback:	
 http://blog.nobel-­‐joergensen.com/2012/03/30/webgl/	
 	

1 Introduction	

1.1 Problem	
 definition	

The purpose of this thesis is to investigate how a 3D game engine can be implemented in
a browser using WebGL, JavaScript and other browser APIs such as HTML5. The main
focus is to compare traditional game engines (C++ based) with a browser based game
engine in respect to performance, maintainability and ease of use.

The knowledge I share in this thesis is gathered from literature, books, blogs, articles and
from building KickJS, a small WebGL based 3D engine that I created during the thesis to
get hands-on experience with WebGL game engine development.

1.2 A	
 brief	
 history	
 of	
 game	
 engines	

The distinction between a game engine and a game can in some cases be unclear or non-
existent. In the past games didn’t even have a game engine, but were coded without reuse
in mind – or the reusable components were isolated in libraries or modules. But as games
grew larger and more complex, it made sense to invest development time in building
game engines instead of starting from scratch every time.

Over time game engines have become much more general purpose. The following shows
the game engine reusability gamut.

Figure 1 The game engine reusability gamut taken from [Gregory09] page 12

Even though game engines are becoming much more reusable in general, they are often
targeting specific game genres, such as first person shooters, real-time strategy, platform
games, etc. One reason for this trend is that many AAA game engines are developed
alongside a AAA game used for showcasing the engine (e.g. Crysis is created with the
CryEngine and Unreal is created with the Unreal Engine).

The Unity game engine is an example of a more general-purpose 3D game engine that is
not particular genre related.

6 WebGL	
 based	
 3D	
 Game	
 Engine	

Morten	
 Nobel-­‐Jørgensen,	
 Master	
 thesis	
 in	
 Games,	
 IT	
 University	
 of	
 Copenhagen,	
 2012	

Feedback:	
 http://blog.nobel-­‐joergensen.com/2012/03/30/webgl/	
 	

1.3 More	
 than	
 just	
 a	
 runtime-­‐framework	

Modern game engines is much more that just an application framework giving the
foundation of your game. Many game engines include content creation tools, such as
scene editors, material editors, particle editors, scripts editors and light baking.

Game engines may also include tools like profilers and debuggers, helping the developer
achieving high performance and minimize bugs.

Another feature of game engines is the asset pipeline. The asset pipeline is responsible
for seamlessly importing assets (such as scripts, 3d models and 2d textures) into the game
engine from external tools. This process includes many stages where the assets are
optimized for the game engine and for specific platforms by using different formats and
resolutions.

An element of a game engine can either be a runtime component, a development
component or in some cases both. In the figure below I have tried to list some of the
common elements of a game engine.

Figure 2 Typical runtime and development components of a game engine

During game development both types of components are being used, but only runtime
components are used in the final game.

1.4 The	
 evolution	
 of	
 web	
 applications	

When the World Wide Web started to take over the world in the late 90-ties, web
applications was created using a web server. A typical use-case would be a user filling
out a form on a webpage, and when the user clicked the submit button, the form would be
send to a webserver that would create a respond send back also as HTML. The web
browser basically worked as a very thin client only responsible for rendering the html and
images, and accepting input from the user.

There were a few problems with this simple request-response approach:

• All web pages were static (except for animated gif images)
• Validation of input forms must be done on the server

RunUme	
 components	

• Renderer	

• Component	
 manager	

• Input	
 handler	

• Shader	
 manager	

• Sound	
 handler	

• AI	

• Script	
 manager	

• Resource	
 manager	

Development	
 components	

• Model	
 importer	

• Texture	
 importer	

• Scene	
 editor	

• Shader	
 editor	

• Debugger	

• Profiler	

• Build	
 tools	

• Versioning	
 control	
 system	

7 WebGL	
 based	
 3D	
 Game	
 Engine	

Morten	
 Nobel-­‐Jørgensen,	
 Master	
 thesis	
 in	
 Games,	
 IT	
 University	
 of	
 Copenhagen,	
 2012	

Feedback:	
 http://blog.nobel-­‐joergensen.com/2012/03/30/webgl/	
 	

In 1996 the browser Netscape Navigator 2.0 was introduced. This browser had support
for two new features1:

• JavaScript2 which allowed more interactivity in the browser such as validation of
form data and simple UI changes (mouse-over effects).

• Support for browser plugins. The first widely spread plugin was support for
Java Applets, which allowed running bytecode directly in the browser. Later came
plug-in technologies like ActiveX, Flash, and Silverlight.

The next significant change in browser history was the introduction of Cascading Style
Sheet (CSS). This was introduced with Internet Explorer 3.0 in 1996. The purpose of
CSS is to separate the styling and formatting from the content of a webpage.

In 2005, Jesse J. Garrett described the Ajax technique3. Ajax shorthand for Asynchronous
JavaScript + XML and is a technique for communicating with a webserver after the
browser has loaded a webpage. Ajax is the foundation of modern web applications since
makes the web application much more interactive than would otherwise be possible. A
typical use of Ajax is Google’s search suggestions that pop up when you start typing a
query in the Google search.

During the short history of web browsers the capabilities have increased at an amazing
speed. Modern web browsers now have access to the local file system, include a build in
database, have support for video and have full screen support. All this without any plug-
ins required. At the same time web browsers have become magnitudes faster, both in
terms of JavaScript performance and rendering.

One way to look at a modern web browser is as an application platform, which offers a
lot of different services, all exposed to client side programs through the JavaScript API.

1.5 The	
 future	
 of	
 browser	
 plug-­‐ins	

Since web browsers have become both fast and have a wide range of capabilities, there is
no longer the same need for plugin as previously. Today many of the things you
previously had to use a plugin to run in a browser are now supported directly by the
browser. In other words, plugins now replicate many of the same features that the
browsers support (canvas rendering, sound, file access, databases, cache, etc.). Today the
browser is no longer the thin client it used to be, but is usually larger in both memory
footprint and file size than most plugins.

1 Metzger11
2 Note that the JavaScript programming language is unrelated to the Java programming language, except
for few similarities in syntax. JavaScript was later standardized into the ECMA script language.
3 Garrett05

8 WebGL	
 based	
 3D	
 Game	
 Engine	

Morten	
 Nobel-­‐Jørgensen,	
 Master	
 thesis	
 in	
 Games,	
 IT	
 University	
 of	
 Copenhagen,	
 2012	

Feedback:	
 http://blog.nobel-­‐joergensen.com/2012/03/30/webgl/	
 	

Besides many of the web browsers run on mobile phones, tables and other devices that do
not have support for browser plug-ins due to limited resources on the devices.

The trend in web application development is to not use plugins, but to rely on solutions
created in pure HTML, CSS and JavaScript. Even major players on the marked are
turning their back to their own plug-ins in favour of HTML:

• Adobe has discontinued Flash for mobile devices to focus on HTML5 instead4.
• Microsoft was announced that Windows 8 supports applications build using web

technology (HTML5 and JavaScript)5.

Even though browser plug-ins definitely will be less used in the future, I’m convinced
that they will exist in many years from now. The reasons for this is:

• Legacy applications. A lot of time and money has been invested into applications
that use plugins. It may not be profitable to port these applications to pure web
applications.

• Even through browsers are getting much more standardized, there is still quite a
few differences that can make web development painful.

• Even though performance of JavaScript and browsers has improved a lot, plug-ins
usually gives much better performance.

One example of a modern, high-performance plug-in is Google’s Native Client (NaCl),
which allows the users to run native binary code written in C++ in the browsers
sandboxed environment.

1.6 Adding	
 a	
 splash	
 of	
 3D	

One of the hot topics of web development today is support for 3D accelerated graphics.
WebGL 1.0 was released in March 20116. WebGL is an API based on the OpenGL ES
2.0 graphics API - a shader-based graphics API targeted to run on handheld devices.
Since OpenGL ES 2.0 is based OpenGL 2.0 it will run on any desktop computer capable
of running OpenGL 2.0.

WebGL has the potential to be quite successful since most of 3D data and calculations
can be uploaded to the GPU. This means that all the heavy work are done by the GPU
whereas the JavaScript part of a WebGL application is responsible for invoking draw
calls and changing state (such as shaders, vertex buffers and textures).

4 Winokur11
5 Larson-Green11
6 Webgl11

9 WebGL	
 based	
 3D	
 Game	
 Engine	

Morten	
 Nobel-­‐Jørgensen,	
 Master	
 thesis	
 in	
 Games,	
 IT	
 University	
 of	
 Copenhagen,	
 2012	

Feedback:	
 http://blog.nobel-­‐joergensen.com/2012/03/30/webgl/	
 	

A simple rendering of a full 3D model can be done as simple as this7:

gl.bindBuffer(gl.ARRAY_BUFFER, buffer);
gl.vertexAttribPointer(0, 3, gl.FLOAT, false, 0, 0);
gl.uniformMatrix4fv(uMVPMatrixLocation, false, mvpMatrix);
gl.drawArrays(gl.TRIANGLES, 0, 3);

The great about this approach is the complexity of the models rendered does not affect
the workload of the JavaScript; the exact same sequence of WebGL calls is made in both
cases. The GPU on the other hand will be affected by the size of the mesh. This is great
since the CPU is likely to be the bottleneck in a WebGL powered program.

WebGL has been available since Firefox 4.0 and Chrome 9.0 both from 2011. Microsoft
is the only major browser vender who is not planning to include WebGL. To use WebGL
in Internet Explorer you need to install a plugin8.

1.7 HTML	
 games	

Ever since JavaScript was introduced as a scripting language for web-browsers, it has
been used for creating simple games. Since then both browsers and computer hardware
has gotten faster, which has made it possible to create increasingly complex games and
interactive applications. Games created in JavaScript are slowly taking over games
previously created using plugin technologies such as Flash and Java.

I think it is important to think of games in terms of complexity. The figure below shows
the complexity of games genres.

Figure 3 Game genres sorted by complexity

JavaScript based games have over the last years been used for creating more complex
games and with the introduction of WebGL it will be capable of handling even more
complex games. I expect that a lot of the 2D and 3D casual games will end up being
made in pure JavaScript.

7 Note that prior to the rendering a setup-phase needs to upload the mesh to the GPU and compile and bind
a shader.
8 Chrome Frame (the full Chrome browser as a plugin) or IEWebGL a more traditional plugin

Text	

adventures	

Board	

games	

Trivia	

games	

Adventure	

games	

2D	
 Puzzles	

2D	

Pla]orm	

games	

Real	
 Ume	

stragegy	

First	
 person	

shooter	

MMORPG	

10 WebGL	
 based	
 3D	
 Game	
 Engine	

Morten	
 Nobel-­‐Jørgensen,	
 Master	
 thesis	
 in	
 Games,	
 IT	
 University	
 of	
 Copenhagen,	
 2012	

Feedback:	
 http://blog.nobel-­‐joergensen.com/2012/03/30/webgl/	
 	

On the other hand, I don’t expect JavaScript will ever be the language for creating cutting
edge games, like C++ is today. JavaScript is simply a too high-level language, which
adds a runtime overhead and may not be able to take full advantage of the hardware. This
will be discussed in details in chapter 2.2.

1.8 Summary	

WebGL makes is possible to create hardware-accelerated 2D or 3D games running inside
a browser without needing any plugin. This makes it possible for creating more complex
games for web browsers since it makes the rendering hardware accelerated.

I believe that the games written in JavaScript will slowly take over games that were
previously written using browser plug-ins – especially for less resource demanding
games.

11 WebGL	
 based	
 3D	
 Game	
 Engine	

Morten	
 Nobel-­‐Jørgensen,	
 Master	
 thesis	
 in	
 Games,	
 IT	
 University	
 of	
 Copenhagen,	
 2012	

Feedback:	
 http://blog.nobel-­‐joergensen.com/2012/03/30/webgl/	
 	

2 JavaScript	
 based	
 game	
 engine	

Based on working with game engines I find that a good game engine should have the
following goals:

1. Performance. The game engine must run as smoothly as possible. Writing
efficient code is traditionally done in a low level language such as C or C++ (with
inline assembler code in critical sections). This approach gives the engine
programmer absolute control for optimizing critical sections of the code where the
compiler is not creating the optimal solution.

2. Ease of development. Game programmers and level designers are the primary
users of a game engine. Usually they work using a more high-level programming
language such as Lua, Unreal Script or Python or perhaps they use a visual
programming language such as Unreal’s Kismet.

3. Abstraction. By taking away some of the complexity of the platform game
developers can work with concepts close to their problem domain and not worry
about the low level details.

These three goals are the same regardless of the platform and the technology of the game.

An important thing to realize is that these goals often contradict one another. High
performance often contradicts abstraction, since abstraction often adds a level of
indirectness to the code.

In this chapter I will investigate how suitable JavaScript is as a language for writing a
game engine. I will first take a look at the best practices for writing high performance
JavaScript and then evaluate how suitable JavaScript is for 3D game engine programming.

2.1 Writing	
 efficient	
 and	
 maintainable	
 JavaScript	

To get the maximum performance out of JavaScript code it is important to understand the
characteristics of the core of the language and the runtime characteristics of JavaScript
engines. Even though modern JavaScript code looks like code written in an object-
oriented language, JavaScript is not object oriented but prototype-based. However it can
mimic some of the object oriented ideas. In this section I will go through some of the
language features and how efficient code can be written for each of these features.

As [Gove11] writes in the chapter “How Not to Optimize”, “In general, it is best to avoid
optimizations that make the code less easy to read. The best approach is to make minimal
changes to the source code or to selected improved compiler flags.” This rule is still valid
in JavaScript, but the JavaScript may not optimize as aggressively as a C++ compiler,
which means that for performance critical parts of your code, you may sacrifice
simplicity over performance.

12 WebGL	
 based	
 3D	
 Game	
 Engine	

Morten	
 Nobel-­‐Jørgensen,	
 Master	
 thesis	
 in	
 Games,	
 IT	
 University	
 of	
 Copenhagen,	
 2012	

Feedback:	
 http://blog.nobel-­‐joergensen.com/2012/03/30/webgl/	
 	

2.1.1 Avoid	
 implicit	
 typecast	

Since JavaScript has dynamic types, the equal operator == tries to typecast before
comparing the values. This means that you should always use === when comparing two
objects, since this operator performs a strict comparison without attempting any typecast.
In the rare cases where you allow objects to be type casted you should use ==.

'3' == 3; // evaluates to true
'3' === 3; // evaluates to false

Code 1 Implicit type casts (==) explained

By avoiding implicit typecast you gain a performance improvement of around 15 %
(measured using a Unit Test)9.

2.1.2 Use	
 of	
 Typed	
 Arrays	

Typed Arrays is a new feature in JavaScript that allows you to do two things:

1. Allocate a byte buffer in memory (using ArrayBuffer)
2. Give a view on that byte buffer as a array of a predefined type (a subclass of

ArrayBufferView).

Typed arrays should be used in the following two use cases:

1. Binary data: Typed arrays allow you to efficiently work with binary data
2. Optiming memory usage: The programmer now has full control of the memory

layout (allowing performance tuning memory access patterns)

The performance gain from using typed arrays is between 20% and 40% over JavaScript
arrays10. The actual gain depends on the data-type.

2.1.3 Avoid	
 chaining	

JavaScript is indeed a dynamic language. It is not possible to declare a constant variable.
This has some interesting side effects.

In a language as Java an expression like: Math.PI*2 will by the compiler be translated
to into 6.28318531 because Math.PI is declared final (and therefore it is considered
safe to copy it's constant value).

However if a JavaScript has to evaluate the same expression it would have to lookup PI
on the Math object every invocation and then multiply the result with two11.

9 See 7 Appendix A: performance tests
10 See Appendix 7.1.1 for more details.
11 The JIT compiler is good at optimizing this, but there still is a small overhead compared to using
constants.

13 WebGL	
 based	
 3D	
 Game	
 Engine	

Morten	
 Nobel-­‐Jørgensen,	
 Master	
 thesis	
 in	
 Games,	
 IT	
 University	
 of	
 Copenhagen,	
 2012	

Feedback:	
 http://blog.nobel-­‐joergensen.com/2012/03/30/webgl/	
 	

One solution to this problem is to declare a variable outside the function like this:

var PI = Math.PI;
function foo(){
 print(PI*2);
}

The function foo no longer has to lookup PI in an object, but can access the cached
variable through its closure. The longer chain you cache in a variable, the bigger saving
(this is very important when using the namespace pattern – it may not give any
significant performance gain in the example above).

A second solution to the problem would be to simply replace PI*2 with the constant
6.28318531, however this is bad programming practice and result in unmaintainable code,
since many programmers would probably have a hard time figuring out what the number
actual means.

A third solution is to use a pre-processor to replace any value of symbols with actual
content.

2.1.4 The	
 namespace	
 pattern	

On common problem with writing code is that you often want to wrap your code in a
namespace to avoid conflicts with other libraries and to keep things separated. JavaScript
does not support namespaces, but it is easy to write a function that simulates namespaces.
This function defines an object unless it is already defined. The function supports nested
namespaces when a dot-separated string is used.

The pattern is closely related to the lazy instantiation pattern. More details of the
namespace pattern can be found in [Crockford08] and [Stefanov10].

2.1.5 The	
 constructor	
 invocation	
 pattern	

One of the classic mantras in object-oriented design is high cohesion and low coupling
(these are two of the GRASP patterns described in [Larman97]). At first sight JavaScript
doesn’t seem support neither classes nor encapsulation.

However you can easily use JavaScript in a way, where functions acts as if they were
constructors.

function Car(){
 // private variables
 var position = 0;

 // private methods
 var lockDoors = function(){
 // …
 };

 // public methods
 this.drive = function(){

14 WebGL	
 based	
 3D	
 Game	
 Engine	

Morten	
 Nobel-­‐Jørgensen,	
 Master	
 thesis	
 in	
 Games,	
 IT	
 University	
 of	
 Copenhagen,	
 2012	

Feedback:	
 http://blog.nobel-­‐joergensen.com/2012/03/30/webgl/	
 	

 lockDoors();
 position++;
 };

 // public variables
 this.name = "My car";
}

Code 2 Constructor pattern

The use of capital letter in Car is very important. It tells the programmer that the function
acts as a class constructor and that he must use the new keyword to create a new instance
of the class. The position and lockDoors variables are private and are not
accessible on the object. But since the two variables are used in the drive method, they
are a part of this methods closure, so this method does have access to them. Note that
new methods added to the object after construction does not have access to the private
variable either.

The constructor invocation pattern is described in [Crockford08]. The private properties
and methods are described in [Stefanov10]. This approach is one of the more
straightforward ways to implement a class in JavaScript, but there are several other
alternatives not discussed here. One of the problems of this approach is that it does not
support true inheritance that works with the instanceof operator.

2.1.6 Using	
 Object	
 Oriented	
 API	
 design	

The main reason for using class-like structures in a prototypical and functional language
like JavaScript is for the design and documentation of the application.

Object oriented design is by far the most common method for software design. Object
oriented design scales well to large problems and there exist many tools and techniques
for dealing with design challenges. One such tool is Unified Modelling Language (UML)
which objective is to “provide system architects, software engineers, and software
developers with tools for analysis, design, and implementation of software-based systems
as well as for modelling business and similar processes”12.

Since object oriented design is currently the most widely used methodology for designing
software, programmers are very familiar with the concepts and the mind-set. For this
reason it also make sense to use an object oriented programming style and documentation
style. This will make the design decisions much more understandable and make it easier
for programmers to transform software design into code.

12 [UML11] Page 1

15 WebGL	
 based	
 3D	
 Game	
 Engine	

Morten	
 Nobel-­‐Jørgensen,	
 Master	
 thesis	
 in	
 Games,	
 IT	
 University	
 of	
 Copenhagen,	
 2012	

Feedback:	
 http://blog.nobel-­‐joergensen.com/2012/03/30/webgl/	
 	

2.1.7 Using	
 properties	

One of the new features in JavaScript 1.8.5 is the introduction of properties. This allows
the developer to specify getter and setter methods, called when a property is accessed on
an object. The feature also allows you to have a property that is read-only or write-only,
and you can specify whether the property should be included when the object is
enumerated13.

Properties can be used for doing validity checks on variables in the setter function. Prior
to the introduction of properties you would have to expose a getter and setter functions
yourself for this to work. A short example of properties usage:

function Car(){
 var speed = 0;
 Object.defineProperty(this,"speed",{
 // define getter function
 get:function(){
 return speed;
 },
 // defines setter function that checks type
 set:function(newValue){
 if (typeof newValue === 'number'){
 speed = newValue;
 }
 }
 });
}

Code 3 Example of type check in property getter function

2.1.8 Using	
 strict	
 JavaScript	

Traditionally JavaScript allows the developer to use variables without declaring them
first. Doing this will declare the variable in the global scope. This means that you are
actually cluttering up the global namespace while having global object references that
you might not intend.

function foo(){
 x = 10;
}
foo();
this.x; // now evaluates to 10

Another related problem is if there is a typo in the variable name, the JavaScript engine
will allocates a new variables in the global namespace. This leads to runtime bugs.

To solve these issues, using a variable without declaring it first is no longer legal in the
newest JavaScript (ECMAScript 5). To enable this rule, the JavaScript engine needs to be
run in strict mode. Strict mode is valid in the current context it is enabled in, meaning that

13 Iterating over the property names of an object

16 WebGL	
 based	
 3D	
 Game	
 Engine	

Morten	
 Nobel-­‐Jørgensen,	
 Master	
 thesis	
 in	
 Games,	
 IT	
 University	
 of	
 Copenhagen,	
 2012	

Feedback:	
 http://blog.nobel-­‐joergensen.com/2012/03/30/webgl/	
 	

you can enable strict mode in either global scope or in a function. To enable strict mode
the “use strict” has to be defined. Example

function foo(){
"use strict";
// [...] function body now uses strict mode
}
// outside uses backwards-compatible mode

Another benefit of using strict mode is that a modern JavaScript editor (such as
WebStorm) can identify problems like these while the code is being written.

2.2 Evaluation	
 of	
 JavaScript	
 as	
 a	
 language	
 for	
 3D	
 engines	

In this chapter I will reflect on some of the pros and cons of using JavaScript for a 3D
game engine.

The chapter mainly focus on the problems that I have encountered during the
implementation of the KickJS engine and methods I have used to overcome the problems.

2.2.1 No	
 compile	
 time	

One problem with many larger game engines is the
amount of time spent on compiling the game. Even
small games often take longer time compiling than
brewing a cup of coffee. This breaks your concentration
and forces you to suddenly do something else.

One of the brilliant things about using JavaScript is
there is no noticeable compile time. You simple write
your code and switch to your browser to see if it works.
In cases it don’t work, you often tweak the
implementation by altering the code from the browsers
JavaScript console – or use the browsers debugger to identify the problems. Or use the
browser’s built-in profiler to instantly find the performance bottlenecks.

2.2.2 Serialization	

JavaScript has built-in support for a few way of serializing and deserializing:

Encoding Pros Cons

String Good for simple data and
textural data.

For more advanced data structures
JSON or XML should be preferred.

Image 1 http://xkcd.com/303/

17 WebGL	
 based	
 3D	
 Game	
 Engine	

Morten	
 Nobel-­‐Jørgensen,	
 Master	
 thesis	
 in	
 Games,	
 IT	
 University	
 of	
 Copenhagen,	
 2012	

Feedback:	
 http://blog.nobel-­‐joergensen.com/2012/03/30/webgl/	
 	

Encoding Pros Cons

XML Can be verified against XML
schema

Good for communication with
other system (such as
webservers), since XML is
widely supported.

The data is human readable,
since the tag name provides
meta-data.

XML is not a compact data format.

Binary data needs to be encoded into
a string using Base64 encoding (or
similar string encoding)

XML is a bit cumbersome to use in
JavaScript.

JSON Very natural to use in JavaScript

More compact than XML.

Human readable (but without
meta-data)

Build in support using JSON
class.

Binary data needs to be encoded into
a string using Base64 encoding (or
similar string encoding)

Binary Data
(ArrayBuffer)

Compact data layout

Good for low-level data access

No built-in string support

Table 1 Serialization options in JavaScript

Serialization in JavaScript is easy and usually quite elegant. JSON is the only method that
can serialize objects automatically. When deserializing data, the programmer must in all
cases do some coding for the correct object to be created.

2.2.3 Lack	
 of	
 operator	
 overload	

3D game programming uses a lot of math with vectors, matrices and quaternions. Many
languages supports operator overloading, which allows you to define behaviour on how
objects should behave when operators (such as *, /, +, and ++) are used with them.
Operator overloading is just syntactic sugar and will in the end result in a normal function
call. However the benefit of using operator overloading is to increase the readability of
the code.

As an example the reflect vector can be calculated this way in C++:

vec3f reflect(vec3f& L, vec3f N){
 return L - 2.0f * L.dot(N) * N;
}

18 WebGL	
 based	
 3D	
 Game	
 Engine	

Morten	
 Nobel-­‐Jørgensen,	
 Master	
 thesis	
 in	
 Games,	
 IT	
 University	
 of	
 Copenhagen,	
 2012	

Feedback:	
 http://blog.nobel-­‐joergensen.com/2012/03/30/webgl/	
 	

Code 4 Reflection vector in C++ (with a vec3f class using operator overload)

JavaScript does not support operator overloading. This means that the same code would
look like this.

function reflect(L, N){
 // performs L - 2.0f * L.dot(N) * N
 return L.subtract(N.scale(- 2 * L.dot(N)));
}

Code 5 Reflection vector in JavaScript (L and N is a vector objects with the methods subtract, scale and dot)

Note that I had to reorder the expression a bit to make it work. When working with large
mathematical expressions the code gets hard to read and debug. For this reason you
would often write code in pseudo code in a comment next to the expression as
documentation.

2.2.4 Memory	
 allocation	

In C++ it is up to the programmer if he want to allocate an object on the stack or on the
heap. Stack allocation is very fast since the runtime just need to increase the stack-pointer
with the size of the data you are allocating. Another benefit is the stack is always “hot” –
memory around the stack pointer is likely to be in CPU cache. In heap allocation the
memory manager has to find a suitable free chunk of memory and mark it as used, this
makes heap allocation slower than stack allocation. The choice of heap vs. stack storage
also depends on the lifetime of the data; data on the stack has the lifetime of the current
function, whereas data on the heap can live as long as the program is running.

C++ even go one step further and allows the programmer to use inline assembler for
cases where manual written assembler code can beat the machine code generated by the
compiler. Assembler code gives the programmer full control over which assembler
instructions are called and what CPU registers are used, but it makes the code less
portable and more complex to read and maintain.

JavaScript is a much more high-level language. All objects in JavaScript are allocated on
the heap, but note that not everything in JavaScript is an object14. The idea behind this is
that the memory allocation should not be the programmer’s responsibility, but instead
something that the JavaScript engine should find the optimal solution for.

The problem is that the runtime does not always handle this situation well. In my opinion,
the real problem is that there is no way of creating temporary objects in a cheap way and
that the JavaScript Engines are not good at optimizing cases where temporary objects are
being used.

14 See more details here [Rauschmayer11]

19 WebGL	
 based	
 3D	
 Game	
 Engine	

Morten	
 Nobel-­‐Jørgensen,	
 Master	
 thesis	
 in	
 Games,	
 IT	
 University	
 of	
 Copenhagen,	
 2012	

Feedback:	
 http://blog.nobel-­‐joergensen.com/2012/03/30/webgl/	
 	

Let’s revisit the reflect method once again – this time refactored to show how the method
performs in terms of memory allocation.

function reflect(L, N){
 var lDotN = L.dot(N); // Allocate primitive (stack)
 var lDotN2 = - 2 * lDotN; // Allocate primitive (stack)
 var scaledNormal = N.scale(lDotN2); // allocate temporary (heap)
 return L.subtract(scaledNormal); // allocate result (heap)
}

Code 6 Memory allocation in JavaScript reflect method

As can be seen the scaledNormal-variable is really only used internally and therefor it
is inefficient that the variable is allocated on the heap. It may be ok that the results is
allocated on the heap as a new object, but in many cases what you really want to do, is
updating an existing object.

High performance JavaScript math libraries, such as glMatrix used in KickJS, are aware
of this issue. They are implemented with a strict rule of not allocating new objects in the
methods.

Optimizing the reflect function to not allocate new objects would look like this:

function reflect(L, N, res){
 if (!res) res = vec3.create();
 var lDotN = vec3.dot(L,N);
 var lDotN2 = - 2 * lDotN;
 var scaleNorm =
 vec3.scale(N,lDotN2, res);
 return vec3.subtract(L,
 scaleNorm,res);
}

vec3f reflect(vec3f& L, vec3f N){
 return L - 2.0f * L.dot(N) * N;
}

Code 7 JavaScript reflect method without object
allocation

Code 8 The original C++ version of the reflect
function

In the JavaScript code above no objects are allocated unless the res input variable is not
specified. The performance gain by using this approach is several hundred percent15. The
performance improvement is gained from the reduced time spent on memory allocation,
but also from the time spent by the garbage collector, which will be discussed in the
chapter below.

The cost of this performance gain is the reduced code readability and increased code
complexity. The original C++ code was one line, whereas the optimized JavaScript is 5
lines of code.

15 More details in the Appendix 7.1.2

20 WebGL	
 based	
 3D	
 Game	
 Engine	

Morten	
 Nobel-­‐Jørgensen,	
 Master	
 thesis	
 in	
 Games,	
 IT	
 University	
 of	
 Copenhagen,	
 2012	

Feedback:	
 http://blog.nobel-­‐joergensen.com/2012/03/30/webgl/	
 	

2.2.5 Garbage	
 collection	

In a language like C/C++ it is the programmers responsibility to deallocate memory
allocated on the heap. In many cases it can be hard to figure out when this deallocation
should occur, and the programmer has to make sure that this deallocation is done correct
so that memory is not leaking.

JavaScript is a garbage-collected (GC) language, which means that you no longer have
worry about memory leaks. However to achieve high performance the best strategy is to
reduce object allocation, this will reduce both the allocation time and the time spend on
garbage collection.

JavaScript engines uses different garbage collection algorithms as described in
[Mandelin11]:

• Mark and sweep
o A naïve two-step algorithm that first marks all reachable objects and then

recycle object that are not reachable.
o The algorithms results in long GC pauses (100 milliseconds or more)

• Generational
o Objects are divided into groups based on their age. Young objects are

checked frequently, where as old object are checked rarely.
o Generally this makes GC less resource demanding.
o In a nursery collection the young objects are checked. Nursery collections

tend to run fast.
o In a tenured collection the old objects are checked. Tenured collection

tends to run slow (but still better than mark and sweep).
• Incremental

o Instead of running a full garbage collection, the incremental algorithm
divides the garbage collection into small time-slices.

o Removes the long GC pauses and is ideal for interactive applications.

The current generation of JavaScript engines use generational garbage collectors. The
next generation of garbage collectors for JavaScript engines will be incremental16.

2.2.6 Resource	
 management	

JavaScript is a language that uses garbage collections, which takes care of deallocating
objects that is no longer referenced. This makes life easy for programmers: the only have

16 This will be introduced in Chrome 17 (http://blog.chromium.org/2011/11/game-changer-for-
interactive.html). For Firefox incremental is scheduled to Firefox 11
(https://bugzilla.mozilla.org/show_bug.cgi?id=641025)

21 WebGL	
 based	
 3D	
 Game	
 Engine	

Morten	
 Nobel-­‐Jørgensen,	
 Master	
 thesis	
 in	
 Games,	
 IT	
 University	
 of	
 Copenhagen,	
 2012	

Feedback:	
 http://blog.nobel-­‐joergensen.com/2012/03/30/webgl/	
 	

to clear all references to objects no longer in use and the system will do the rest. This is
usually a simple task, but the usage of closures can complicate the task.

Another significant task of a resource management system is to avoid loading the same
resource more than once. The problems of loading a resource more than once are the time
it takes to load the resource, the memory the resource occupies and finally by reusing
existing resources often gives much performance due to the cache utilization of modern
computer architecture. When JavaScript is used for scripting a web-browser, the web-
browser makes sure that images and other resources are not loaded unneeded. This means
that frontend JavaScript developers do not need to think much about resource
management and resource sharing when creating web applications.

Even though WebGL is a JavaScript API, it is not an object oriented API. WebGL is a
based on OpenGL ES 2.0 API and inherits much of its C-based structure. This means that
WebGL resources are identified using integer identifiers and not object references as
JavaScript developers are familiar with.

Developers using WebGL has to manage resources much more explicit than other
JavaScript APIs, this includes both allocation and deallocation. Let’s see how other
languages deals with resource management.

Resource management in C++

C++ is an object-oriented language, where each class has both a constructor and a
destructor. The usual solution to resource management in C++ is the Resource
Acquisition Is Initialization programming idiom (RAII). In RAII resources are allocated
in the constructor and deallocated in the destructor. This approach is very simple to
implement and maintain.

Resource management in Java

Java is a language with garbage collection, just as JavaScript. However Java is an object-
oriented language, where classes have constructors and also an optional finalize
method. The finalize method is guaranteed to be called when the object is marked for
garbage collection.

A typical example is the FileInputStream object, where the finalize method
calls the close method if the programmer has not explicit called the method.

Dealing with explicit resource management in JavaScript

Unfortunately JavaScript cannot implement RAII, since objects in JavaScript does not
have destructors. Using a reference counting schema like C++ smart pointers is also not
possible in JavaScript, since there is no copy constructor in JavaScript either. Reference

22 WebGL	
 based	
 3D	
 Game	
 Engine	

Morten	
 Nobel-­‐Jørgensen,	
 Master	
 thesis	
 in	
 Games,	
 IT	
 University	
 of	
 Copenhagen,	
 2012	

Feedback:	
 http://blog.nobel-­‐joergensen.com/2012/03/30/webgl/	
 	

counting can be implemented if the counter is increased or decreased explicit with a
function call, but this approach is tedious to use.

The finalize method approach works great in Java, but since JavaScript does not call
any finalize method when an object is marked as garbage, this approach cannot be
used.

JavaScript simple does not handle explicit resource management as used in WebGL very
elegant. Care must be taken to loading resources only once and releasing them at the right
time.

2.2.7 Late	
 binding	

JavaScript is a dynamic programming language with late binding. This means that the
attributes and methods of an object can change at runtime, which means that when the
program invokes a method or is accessing an attribute of an object, the runtime needs to
lookup the method/attribute in a map that the runtime has associated with the object17.

This is a very fundamental language feature of JavaScript and allows you to do a lot of
clever things with the language, such as lazy instantiation of properties, the namespace
pattern and a lot of the other JavaScript patterns.

The late binding does have a price: There is no ways of specifying true constant variables.

Constant values are important to work with to give meaning to numbers and objects
instances. One good example of why constants would be nice to have is when working
WebGL. The WebGL context object exposes all WebGL enums (such as gl.ZERO).
There are two problems with this approach:

• There is some overhead involved in reading a property; The JavaScript engine has
to lookup property value in the objects property-map every time the property is
read. If the language supported constant objects the value would be set at compile
time, which allows the compiler to do some more optimizations, such as constant
folding where expressions are evaluated at compile time.

• The properties are modifiable. So it is possible to assign the value one to the enum
gl.ZERO, which is unlikely to make sense. There is workarounds for this – see
chapter below.

A related topic is pre-processor macros (used in languages like C/C++). A pre-processor
is an advanced text-replacement that runs before the actual code is compiled.

17 This has similarities with the virtual method table used in C++ runtimes.

23 WebGL	
 based	
 3D	
 Game	
 Engine	

Morten	
 Nobel-­‐Jørgensen,	
 Master	
 thesis	
 in	
 Games,	
 IT	
 University	
 of	
 Copenhagen,	
 2012	

Feedback:	
 http://blog.nobel-­‐joergensen.com/2012/03/30/webgl/	
 	

I have implemented a pre-compiler for the KickJS engine. The KickJS pre-compiler
replaces WebGL enums to constants and also replaces debug and an assert flag with
either a true value or a false value. The debug and assert flag are used to add extra checks
to the debug builds.

The performance gained by introducing this pre-compiler is between 2% and 6% and the
code size is reduced with 10%. The performance gain is however highly dependent of the
actual usage and the JavaScript engine.

Objects are always modifiable

Prior to JavaScript 1.8.518 there was another issue: Objects are always modifiable. Even
though this is also listed as one of the benefits of JavaScript, in some cases this can
feature can be problematic. A good example of when this can be problematic is when
creating a JavaScript library, where you usually are not interested in other JavaScript
programs modifies the included library.

This issue has been resolved in JavaScript 1.8.5, where the Object.freeze method
was introduced. Frozen objects cannot change its signature and the value of the existing
properties can neither be changed. A related method is the Object.seal that only put
restriction on changing the signature.

Another related technique to define constants is to use read-only properties using one of
the Object.defineProperty / Object.defineProperties methods.

2.2.8 Just-­‐In-­‐Time	
 compilers	

Modern JavaScript engine all use Just-In-Time (JIT) compilers to increase their
performance. A JIT compiler compiles JavaScript bytecode to machine code executed
directly on the CPU. Performance critical parts of JavaScript are compiled using a more
efficiently type-specializing JIT compiler. Rare cases are still executed by the JavaScript
interpreter.

18 ECMAScript 5 compatible

24 WebGL	
 based	
 3D	
 Game	
 Engine	

Morten	
 Nobel-­‐Jørgensen,	
 Master	
 thesis	
 in	
 Games,	
 IT	
 University	
 of	
 Copenhagen,	
 2012	

Feedback:	
 http://blog.nobel-­‐joergensen.com/2012/03/30/webgl/	
 	

Image 2 JIT compiler illustrated (taken from [Mandelin11])

The JIT compiler does a lot of performance tricks such as inline caching, which reduces
the overhead of accessing properties on objects and accessing closure variables.

One problem the JIT compiler has to deal with is that JavaScript doesn’t have types. This
means that type-checks still need to be executed whenever a variable is accessed and that
values need to be boxed/unboxed. To solve this problem a type-specializing JIT compiler
is used. The type-specializing JIT compiler monitors the types of objects and recompiles
if the types of an object is changed. Type-specializing JIT compilers takes longer time to
compile code, and is only used on hotspots in the code. The JavaScript engine finds these
hotspots by sampling the running code.

The JIT compiler is the main reason for the performance improvements we have seen in
JavaScript engines during the last 5 to 10 years. However the JIT compiler also
introduces some complexity, since you need to know the behaviour of different
JavaScript JIT compilers to write JavaScript code that performs well on all platforms.

2.2.9 Number	
 precision	
 and	
 performance	

In JavaScript there is only one numeric type with double floating point precision (64-
bit)19. This simplifies calculation in JavaScript a great deal and since the type with the
most precision is chosen floating point accuracy problems is less likely to occur.

One of the new features in JavaScript is typed-arrays. In some way this adds numeric
types to JavaScript. But one important thing to realize is that when a number is read from

19 At least if you look at the ECMAScript specification. JavaScript engines may have a SMI (SMall Integer)
type as a performance optimization. But this doesn’t really affect the discussion in this chapter, since it is
really the single precision floating point that is needed.

25 WebGL	
 based	
 3D	
 Game	
 Engine	

Morten	
 Nobel-­‐Jørgensen,	
 Master	
 thesis	
 in	
 Games,	
 IT	
 University	
 of	
 Copenhagen,	
 2012	

Feedback:	
 http://blog.nobel-­‐joergensen.com/2012/03/30/webgl/	
 	

a typed array, it is casted to the default numeric type. This means that all calculation in
JavaScript is still done using double precision20.

Game engines usually prefer 32-bit floating-point precision for all their floating-point
calculations, since this gives sufficient precision for games. The main reason for using
32-bit precision is in terms of memory bandwidth. One fundamental problem with
modern hardware is the CPU is significant faster that the memory. Since 64-bit data-types
of takes up twice as much bandwidth as 32-bit data-types, it is much faster to use 32-bit
precision when working with large data sets.

Note that it may be beneficial to use typed arrays in JavaScript in cases where the
performance is memory bound. (Even though each access to the typed array will add a
small overhead, since the number will be casted to a 64-bit floating point). This
behaviour can be seen in appendix ‘7.1.1 Benchmark: Typed arrays’, which clearly
shows performance improvements in using smaller data-types.

SIMD	
 instructions	

3D games have in many ways had a major influence on hardware design such as CPUs
and GPUs. One of these enhancements was the introduction of single-instruction-
multiple-data (SIMD) instructions that boost vector and matrix calculations on the CPU.

On the desktop marked the most common SIMD instruction set is currently SSE2 and
SSE3, used in both AMD and Intel CPUs. The instruction set is mainly designed for 32-
bit floating-point values, which unfortunately means that the JavaScript engines cannot
use this instruction-set for much.

2.2.10 Multi-­‐threaded	
 programming	

JavaScript has traditionally been single threaded. A JavaScript engine context, such as a
web-browser, uses an event based programming model, where you hook up JavaScript to
different event listeners or timers. This means that all JavaScript is running in the same
event thread in callback functions scheduled by the event system. If some JavaScript code
runs for a long time, the context it runs in becomes unresponsive.

Image 3 Unresponsive warning from a web-browser

20 See ‘Double precision test’ in Appendix 7.2.3

26 WebGL	
 based	
 3D	
 Game	
 Engine	

Morten	
 Nobel-­‐Jørgensen,	
 Master	
 thesis	
 in	
 Games,	
 IT	
 University	
 of	
 Copenhagen,	
 2012	

Feedback:	
 http://blog.nobel-­‐joergensen.com/2012/03/30/webgl/	
 	

To keep the browser responsive, some built-in functions in JavaScript can execute
asynchronous in its own thread. The callback events from an asynchronous operation are
delegated back to the event thread, so all JavaScript executions happens in the same
thread. A typical example of this, is script-based image loading where you specify an
onload event handler that will be triggered in the event thread once the image has been
fully loaded.

Until recently it was not possible to have user-defined code to run in a separate thread,
but that changed with the introduction of the Web Workers API. Web Workers are a
simple way to create a true multithreaded program in JavaScript, which allows you to run
heavy computations without blocking the JavaScript context.

Another reason why Web Workers are important is the rise of multicore CPUs. Today
both PCs and handheld devices are shipped with multicore CPUs with each CPU-core
possible having multiple hardware threads. In order to use the hardware to its full
potential, JavaScript simply needed a way to do threading.

Multithreading usually adds a lot of complexity to a programming language.
Multithreaded programs can suffer from data races, where multiple threads work on the
same data. To solve this problem programming languages often introduce a
synchronization mechanism, such as mutex-locks and critical regions, but this yields
another set of problems: deadlocks and livelocks, where two or more threads get stuck
waiting for each other.

JavaScript Web Workers take a different approach: message parsing. In Web Workers
you simply cannot share data, which means that there is no data races. Web Workers
communicate using message passing, where the message content is copied by value not
by reference21. Web Workers does not have access to resources in the JavaScript context,
such as the DOM elements.

One potential problem with Web Workers is that data needs to be copied whenever
passed between threads. This makes Web Workers best suitable for problems with low
communication between threads22.

In relation to game engines Web Workers also is a bit problematic, since there is no way
to join two threads. This makes Web Workers only useful for jobs running “between”
two frames.

21 Web Workers are very similar to the Message Parsing Interface (MPI) programming model
22 This is solved by the Transferable Objects introduced in Chrome 17, which transfers ownership (and
access) instead of copy data.

27 WebGL	
 based	
 3D	
 Game	
 Engine	

Morten	
 Nobel-­‐Jørgensen,	
 Master	
 thesis	
 in	
 Games,	
 IT	
 University	
 of	
 Copenhagen,	
 2012	

Feedback:	
 http://blog.nobel-­‐joergensen.com/2012/03/30/webgl/	
 	

2.2.11 Hardware	
 abstraction	
 layer	

Both browsers and WebGL acts as a hardware abstraction layer, which generalizes the
access to the hardware so that the hardware can be accessed in a uniform way while the
layer fixes known bugs on problematic platforms.

One good example of this is how WebGL is implemented on the Windows platform in
Firefox and Chrome. For WebGL to run an OpenGL 2.0 driver needs to be available. On
windows platforms such driver may not exist or may be in poor shape. So instead of
requiring a driver update, browsers use the open source project ANGLE (Almost Native
Graphics Layer Engine23) which builds the OpenGL ES 2.0 API on top of DirectX 9 API,
which is generally very well supported on windows hardware.

The hardware abstraction layer let the developers focus on their problem domain instead
of spending their time on dealing with different hardware architecture, drivers and low-
level bugs. This also means that the same WebGL code should be able to run on any
platform with OpenGL 2.0, OpenGL ES 2.0 or DirectX 9 supports, which includes most
new smart phones, tables and computers.

The wide range of devices running WebGL does have different capabilities. WebGL
deals with this in two ways:

• Hardware queries: Programs running WebGL can query the API to determine
different capabilities. Usually these capabilities specify the maximum numbers of
different resources based on the actual hardware. This includes things as the
number of texture sampling units for both the vertex, the fragment shaders and in
total.

• Extensions: Allows vendor specific extensions to be used. WebGL extensions
require that both the browser and the hardware support that extension. One such
extension is the floating-point textures.

The problem with using a hardware abstraction layer is that hardware often has
capabilities that are not supported in the hardware abstraction layer. One example of this
is that modern GPUs support geometry shaders and tesselation shaders, but no WebGL
implementation supports these shaders yet.

2.3 Summary	

JavaScript is an easy-to-use high-level programming language that programmers can use
without needing to deal the underlying details such as memory management, data types,
and other low level complexity. JavaScript usually result in clean code that is very easy to
read and understand.

23 http://code.google.com/p/angleproject/

28 WebGL	
 based	
 3D	
 Game	
 Engine	

Morten	
 Nobel-­‐Jørgensen,	
 Master	
 thesis	
 in	
 Games,	
 IT	
 University	
 of	
 Copenhagen,	
 2012	

Feedback:	
 http://blog.nobel-­‐joergensen.com/2012/03/30/webgl/	
 	

Writing high performance JavaScript is a bit of a challenge. The programmer needs to
know not only the language specification but also how different JavaScript engines work
internally. When working with 3D graphics, the JavaScript code often gets less readable
due to the lack of operator overload in the language and due to code that avoids memory
allocation.

If you characterize JavaScript-based game engines in terms of the four goals listed in the
beginning of the chapter you get:

1. Performance. Even through the speed of JavaScript has increased over the last 10
years; there are still areas where JavaScript cannot achieve the same performance
as native C++ code.

2. Ease of development. JavaScript is a really easy and simple language and
browsers today includes profilers, debuggers and command-line interpreters.
JavaScript game engines can build on top of this and provide game engine
specific tools such as shader editors and scene editors.

3. Abstraction. JavaScript engines can easily encapsulate the complicated WebGL
API and expose a simplified API for the game developers with meaningful
abstractions.

29 WebGL	
 based	
 3D	
 Game	
 Engine	

Morten	
 Nobel-­‐Jørgensen,	
 Master	
 thesis	
 in	
 Games,	
 IT	
 University	
 of	
 Copenhagen,	
 2012	

Feedback:	
 http://blog.nobel-­‐joergensen.com/2012/03/30/webgl/	
 	

3 KickJS	
 –	
 a	
 WebGL	
 game	
 engine	

In this chapter I will discuss the implementation of the KickJS game engine. This
includes the design decisions I made during the implementation. The chapter will
highlight the most important features of the engine, but will not give a complete
description of all the details. For more in depth information see the API documentation
and the source code.

3.1 High-­‐level	
 overview	

KickJS is a WebGL based game engine built for modern web browsers such as the most
recent versions of Chrome and Firefox24. The engine provides the infrastructure for
WebGL based games and takes away the low-level complexity of WebGL. The engine
targets JavaScript programmers who want an easy to use and well-documented engine.
The engine is shader based, but ships with built-in shaders.

The source code is released as Open Source under the BSD New License. The engine, the
documentation and the examples can be found here:

http://www.kickjs.org/

3.2 Programming	
 style	
 and	
 documentation	

KickJS uses both an object oriented programming style as well as an object oriented API
documentation. The API documentation is created using YUI Doc, which is a mark-up
based documentation. YUI Doc is very similar to JavaDoc, but with one significant
exception: all documentation comes from the documentation mark-up tags, where in
JavaDoc package-names, class-names and method-names are extracted from the source
code. YUI Doc generates documentation in HTML files. An example of YUI Doc
documentation tag can be seen here:

/**
 * A driveable car
 * @class Car
 * @constructor
 */
function Car(){
 /**
 * Moves the car forward
 * @method drive
 */
 this.drive = function(){ /* … */ };
}

Code 9 YUI Doc tag used to document JavaScript

24 At the time writing this is Chrome 17 and FireFox 10

30 WebGL	
 based	
 3D	
 Game	
 Engine	

Morten	
 Nobel-­‐Jørgensen,	
 Master	
 thesis	
 in	
 Games,	
 IT	
 University	
 of	
 Copenhagen,	
 2012	

Feedback:	
 http://blog.nobel-­‐joergensen.com/2012/03/30/webgl/	
 	

3.3 Scenegraph,	
 rendering	
 and	
 the	
 game	
 loop	

In this section I will describe the main ideas behind the core parts of the KickJS engine;
the scenegraph, the rendering and the game loop.

3.3.1 The	
 entity	
 based	
 approach	

In the past game programmers often used deep class
hierarchies to represent game entities. The idea here
is that game entities exist in a game world and have
spatial information. Typical entities found in a game
could be: player, car, weapon, grenade, etc.

The legacy way of modelling game entities is to use
class inheritance where general types are pushed
upwards in the class hierarchy (such as Moveable in
Figure 4 Example of deep class hierarchy). As new
classes are added, shared functionality is again pushed
up to parent classes by introducing new methods. This
eventually results in very heavy super classes also
known as “the blob” (an anti-pattern).

Another related problem is that hard to combine objects (such as having a vehicle that is
both a car and a boat).

One of the main reasons that this approach has problems is the high coupling that exists
between classes. This makes it hard to introduce new classes and to change existing
classes. A deeper discussion of entity based vs. component-based design is found in
[West07].

Entity
 +- Static
 | +- Ladder
 | +- Portal
 |
 +- Moveable
 | +- Vehicle
 | | +- Car
 | | +- Boat
 | |
 | +- Human
 | +- Player
 | +- Enimy
 +- Gun

Figure 4 Example of deep class hierarchy

31 WebGL	
 based	
 3D	
 Game	
 Engine	

Morten	
 Nobel-­‐Jørgensen,	
 Master	
 thesis	
 in	
 Games,	
 IT	
 University	
 of	
 Copenhagen,	
 2012	

Feedback:	
 http://blog.nobel-­‐joergensen.com/2012/03/30/webgl/	
 	

3.3.2 The	
 component	
 based	
 approach	

The main idea in the component based approach is to have game entities acting as
containers of component objects. This is done by aggregation, meaning that the game
entity owns its components (and components cannot be shared). The obvious benefit of
this approach is the reduced coupling between classes. There still exists some
dependencies between components, but the responsibility of each component is much
clearer.

KickJS implements a component-based architecture. As can be seen from the UML
figure below, each game object contains a number of components. Each of these
components defines a behaviour or property of the GameObject. All GameObjects
has a Transform component attached that defines the spatial information (position,
rotation and scale). The Transform component also has a reference to a parent
Transform object, which allows the scenegraph to be hierarchical.

UML 1 Scenegraph design

The pros of using a component-based scenegraph are:

• Extensible structure. It is very easy to add a new behaviour to a program using the
game engine, simply by creating a new component.

• Clean code with clear responsibility of each class
• The architecture scales well

The cons of a component-based scenegraph are:

• Adds a little overhead compared to a hardcoded structure due to the increased
indirectness.

• In some cases, there is too much overhead in representing each entity in its own
object. One such case is particle system, which should be implemented by using
data oriented design [Llopis09]. Here all particles should be managed by a single
component and there is not longer a single object that represents a single particle
– instead each particle is represented as a part of an array.

3.3.3 Component	
 and	
 scripting	

UML 1 shows that all components inherit from a Component class. The Component
class actually doesn’t exist, but is only introduced for documentation purpose. Any object
can act as a component and its behaviour is defined by the methods it implements:

32 WebGL	
 based	
 3D	
 Game	
 Engine	

Morten	
 Nobel-­‐Jørgensen,	
 Master	
 thesis	
 in	
 Games,	
 IT	
 University	
 of	
 Copenhagen,	
 2012	

Feedback:	
 http://blog.nobel-­‐joergensen.com/2012/03/30/webgl/	
 	

• update()is called every frame.
• render() is called whenever the object are to be rendered
• activated() / deactivated() are called when a GameObject is

loaded. The activated method works in many cases like a constructor function,
where references to other game objects can be looked up (this cannot be done
when the actual constructor function is called, since the scene may not be loaded
completely).

Component objects can also specify other important properties:

• uid: Unique identifier (will be added automatically if not exists)
• scriptPriority: Specifies the order of script executing. This way some

scripts are guaranteed to run before other scripts. This is useful for scripts like
camera controllers, which often needs to run after all objects have updated their
positions.

• renderOrder: determine in what order that the rendering must take place in.

3.3.4 Updating	
 and	
 rendering	

On each frame all game objects are updated and rendered.

A naïve algorithm would iterate over the scenegraph from the root of the scenegraph and
then for each game-object call the method all of its components. This method works but
is slow since all nodes of the scenegraph are visited even though only a subset of the
scenegraph is actually needed.

Instead KickJS maintains lists of components of objects based on the methods of the
components. There are multiple advantages of this approach:

• No need to iterate over GameObjects

GameObject

Component Component

Scene

GameObject

Component Component

Components with update()

Figure 5 Updateable component list

33 WebGL	
 based	
 3D	
 Game	
 Engine	

Morten	
 Nobel-­‐Jørgensen,	
 Master	
 thesis	
 in	
 Games,	
 IT	
 University	
 of	
 Copenhagen,	
 2012	

Feedback:	
 http://blog.nobel-­‐joergensen.com/2012/03/30/webgl/	
 	

• The listed are sorted when they are created (using insertion sort). This means that
it is easy and cheap to implement features like scriptPriority and
renderOrder.

• The lists only contains the relevant objects

The scene object maintains a list of updateable script components and the camera objects
maintains lists of renderable components.

The actual rendering of renderable components is a little more complex:

• In the active scene, the render method of each active camera is called (sorted by
camera index)

• When rendering each camera, the cameras list internal list of renderable
components are iterated, and the render method on each of the component are
called. The list is actually implemented as three lists: one for normal object, one
for translucent object and one for overlay objects. The translucent object list is
sorted in a back-to-front order based on distance to the camera in each frame. The
other two lists are sorted by renderIndex on creation.

• When rendering a MeshRender component, first the material and its shader are
bound and then the mesh object is bound.

• The draw command is finally invoked

To speed up the rendering, objects are only bound if needed. This means if you render
two objects with the same material and mesh right after each other, the material and mesh
objects are only bound once. For materials this will give a performance gain of around
16%25.

3.3.5 KickJS	
 Event	
 queue	

Component.update() work great for code that needs to run every frame. But
sometimes you want code that executes only in one frame or within a short time range.
Or maybe you need to schedule an event to some point of time in the future.

A JavaScript developer would take a look in his toolbox and find the find the
setTimeout and setInterval functions and use these to trigger code execution.
However this approach is not guaranteed to work well with KickJS engine, since the code
execution will be triggered outside update-phase of the game loop. Besides it will be
impossible to sync setTimeout/setInterval to the frame-rate KickJS is running.

25 See test case in Appendix 7.2.1

34 WebGL	
 based	
 3D	
 Game	
 Engine	

Morten	
 Nobel-­‐Jørgensen,	
 Master	
 thesis	
 in	
 Games,	
 IT	
 University	
 of	
 Copenhagen,	
 2012	

Feedback:	
 http://blog.nobel-­‐joergensen.com/2012/03/30/webgl/	
 	

Figure 6 The game loop

KickJS implement its own event queue, where events can be added with a start and an
end time (relative to current time). To run code in the next frame, use 0 in start time
parameter. It is also possible to cancel an already scheduled event at any given time.

The KickJS event queue is not a replacement for the web browser’s event queue. KickJS
uses the browser’s event queue to get frame-updated events, mouse events and keyboard
events. KickJS components should always use the update method or the KickJS event
queue to ensure that your events are invoked at the right time.

3.3.6 Game	
 loop	

To sum up what’s happening in a
single frame. First the queued
events are fired, then the
components are updated and finally
the scene is rendered.

The frame-rate is kept consistent
using the
RequestAnimationFrame
API, which also has the benefit of
throttle or lower the frame-rate for
background tabs.

3.3.7 Camera	
 class	

The camera object gives a view into the game world. KickJS supports multiple active
cameras in a scene. Each camera maintains a layerMask, which selects only the
renderable components where the components gameObject matches the bitmask (each
GameObject object has a layer property).

The main properties of a camera are the camera projection. Currently two types of
projection are supported: perspective and orthogonal. The view-frustum of the
perspective camera is defined using the field-of-view Y, the near and the far plane. The
view volume of the orthogonal camera is defined by its left, right, top, bottom, near and
far planes. Based on these inputs the projection matrix is computed. The matrix is cached
and only updated whenever the projection properties of the camera are changed.

A camera also defines a viewport (defined relative to screen size). When setting the
viewport, the camera will render to a rectangular part of the screen.

Before a camera is rendered its viewport is cleared, based on the values of the
clearColor, clearFlagColor and clearFlagDepth.

The default behaviour of a camera is to render to the default render context (the screen),
however it is possible to render to a texture by attaching RenderTexture object as a

Frame	

started	

Event	
 queue	

Components	

updated	

Components	

rendered	

Wait	
 for	

new	
 frame	

35 WebGL	
 based	
 3D	
 Game	
 Engine	

Morten	
 Nobel-­‐Jørgensen,	
 Master	
 thesis	
 in	
 Games,	
 IT	
 University	
 of	
 Copenhagen,	
 2012	

Feedback:	
 http://blog.nobel-­‐joergensen.com/2012/03/30/webgl/	
 	

render-target. The RenderTexture class is implemented using WebGL’s frame buffer
objects (FBOs).

Having multiple cameras in a scene combined with layer-masks and render-targets opens
up for a long list of render effects and postprocessing effects such as:

• Deferred rendering
• Screenspace ambient occlusion
• Reflections
• Shadows (using shadow maps)
• Picture in picture
• Ping pong textures

WebGL only supports binding one FBO as a color buffer, so multiple color FBOs or
depth FBOs are not supported. This does makes some effects such as deferred rendering a
bit trickier to implement. One workaround is to use a floating-point texture for the Frame
Buffer Object and then pack the values into the 4 floating point channels of the texture.

3.3.8 Light	

The engine supports 3 different types of light:

• Directional light: Usually used for emulating sunlight where the light rays are
parallel.

• Point light: Emulates a point light source, such as a light bulb. Point lights
supports attenuation by providing a constant, linear and quadric factor26.

• Ambient light: Emulates a constant indirect light, which is light reflected from
the environment.

A scene can have up to one directional light and up to one ambient light, but the
maximum number of point light depends on the scene settings.

During rendering the lights are transformed into eye-space and send to the shader, if the
shader defines the light uniforms. All light sources have a colour property and intensity
property. The point light also specifies attenuation.

The light model used is very close to light model used in the fixed-function pipeline of
OpenGL including some of the limitations, such as a fixed number of lights.

26 The attenuation is calculated by 1/(attconst+attlinear*dist+attquad*dist2). Where dist is
distance between point light and light source.

36 WebGL	
 based	
 3D	
 Game	
 Engine	

Morten	
 Nobel-­‐Jørgensen,	
 Master	
 thesis	
 in	
 Games,	
 IT	
 University	
 of	
 Copenhagen,	
 2012	

Feedback:	
 http://blog.nobel-­‐joergensen.com/2012/03/30/webgl/	
 	

3.3.9 WebGL	

KickJS uses WebGL for all rendering. WebGL is hosted in a canvas tag in a HTML
document. It is possible to mix this canvas tag with other html components (such as text,
2D images and other HTML-components). The typical use-case would be creating 3D
games with KickJS, where all menus, heads-on-display (HUD) and other 2D graphics
implemented using traditional HTML-components positioned on top of the canvas.

Even though KickJS uses WebGL internally, its main purpose is to abstract the low-level
rendering API away by exposing a high-level API for the game programmer. This has the
benefit, that programmers can use KickJS without being familiar with the low-level
WebGL API, and instead work with abstractions such as Scenes, GameObjects,
Components, Camera, and Materials.

For advanced usage of KickJS, a reference to the WebGL context is still available. Usage
of the WebGL context should be done with care, since it can change the WebGL state
and disturb the rendering.

3.4 Resource	
 management	

The first attempt to create a resource management system in KickJS was to implement a
simple reference counting system, where the programmer was responsible for managing
reference counts using function calls. While this works great in theory, in practise this
approach is too cumbersome to use, and I believe that programmers would tend to forget
to release resources.

Instead KickJS uses a much simpler approach: To load all resource in a project on start-
up and keep the resources in memory during the lifetime of the project. The benefits of
doing this are:

• It is easy to predict the resource usage during the game, since this is constant
(except for dynamically allocated resources)

• Resource loading is simplified and it is easy to implement a loading bar that
shows the loading progress

• Works well for small for small and medium sized games where the resources can
fit in memory.

The problems with this simplistic approach is:

• Only works when all resources can fit in memory.
• No support for streaming levels while you play.

[Gregory08] suggest a slightly more advanced approach, where resources are divided into
three categories based on the resource lifetime requirement:

1. Load-and-stay-resident (LSR). Resources are loaded at start-up and kept in
memory

37 WebGL	
 based	
 3D	
 Game	
 Engine	

Morten	
 Nobel-­‐Jørgensen,	
 Master	
 thesis	
 in	
 Games,	
 IT	
 University	
 of	
 Copenhagen,	
 2012	

Feedback:	
 http://blog.nobel-­‐joergensen.com/2012/03/30/webgl/	
 	

2. Resources associated with a scene, such as scene-specific scripts or models.
3. Resources with a shorter timespan than a full level, such as resources used in cut-

scenes.

Adding #2 or #3 to KickJS would need a reference counting scheme, to guarantee that
resources are loaded and released correctly.

3.4.1 High-­‐level	
 resource	
 loading:	
 Loading	
 project	
 resources	

The Project object is responsible for loading all resources upon start-up and during the
runtime of a game it will keep track of any additional resources created or loaded runtime.

References to resources in a project can be received using the method load(uid). The
Project object is responsible for caching a reference to all resources to prevent any
response is loaded twice.

Finally the Project object supports serialization.

Built-in resources are included in all projects (and cannot be removed). They are loaded
on demand, but are all very small and fast to load. The build-in resources include shaders,
textures and mesh-objects.

3.4.2 Low-­‐level	
 resource	
 loading:	
 URI	
 based	
 resource	
 loading	

Resources in a web-browser are usually loaded using a URL. Inspired by this approach
KickJS uses an URI based resource loading scheme for loading external resources. The
engine supports multiple resource providers and custom resource providers can be added
as well.

The resource loader starts up using the following two resource providers:

• URLResourceProvider: This resource provider is responsible for downloading
resources using http requests. It also works as the fallback resource provider that
will be used if no resource provider matches the URI scheme name of the
resource. This allows usage of relative URLs.

• BuiltInResourceProvider: This resource provider is responsible for loading
built-in resources such as basic textures (white, black, grey), shaders, and meshes
(cube, UV-sphere, plane)

The resource providers used are found based on the URI scheme name of the resource
URI. An example could be “kickjs://mesh/plane/” where the “kickjs:” is the URI scheme
name.

38 WebGL	
 based	
 3D	
 Game	
 Engine	

Morten	
 Nobel-­‐Jørgensen,	
 Master	
 thesis	
 in	
 Games,	
 IT	
 University	
 of	
 Copenhagen,	
 2012	

Feedback:	
 http://blog.nobel-­‐joergensen.com/2012/03/30/webgl/	
 	

Figure 7 KickJS resource URI

The resource loader will always load requested resources. No caching will be done in the
resource provider.

Usually the Project object should be used to load resources, but if new instances are
needed the resource loader can be used.

3.5 Mesh	

The Mesh class is responsible for rendering a 3D mesh object. The Mesh class is an
abstraction of the WebGL vertex attribute buffers and vertex index buffers.

The Mesh class uses interleaved vertex attribute buffers (see Figure 8). This means that
the data is organized in the way that the GPU needs it which will result in a faster
rendering. Another nice side effect is when the interleaved vertex attribute buffer is used;
it is much faster to bind this single buffer than binding a separate buffer for each vertex
attribute. The disadvantage of using interleaved vertex attribute buffers is if the CPU
needs to update parts of the vertex attribute data (such as the vertex positions only).
When using interleaved vertex attribute buffers this is simple not possible – instead a full
update of the buffers needs to be done instead. This is usually not a problem, since most
interactive updates (such as animations etc.) would usually be performed on the GPU
based on uniform input variables.

kickjs://mesh/plane/

‘kickjs:’ URI scheme name ‘//mesh/plane/’ Resource name

1 2 3

1 2 3

1 2 3
1 1 1 2 2 2

Multiple vertex attribute
buffers

Interleaved vertex attribute buffer

Vertex

Normal

U
…

Figure 8 Interleaved vertex attribute buffers

39 WebGL	
 based	
 3D	
 Game	
 Engine	

Morten	
 Nobel-­‐Jørgensen,	
 Master	
 thesis	
 in	
 Games,	
 IT	
 University	
 of	
 Copenhagen,	
 2012	

Feedback:	
 http://blog.nobel-­‐joergensen.com/2012/03/30/webgl/	
 	

To support 3D geometry with multiple materials, a mesh can have multiple vertex index
buffers (one for each material). This feature is referred to as sub-mesh.

The Mesh class is a small class with only a few important methods:

• bind(shader): Binds the mesh to a shader object (match the vertex attributes
with the shader vertex attribute locations)

• render(submeshIndex): Render the sub-mesh of the mesh.

The mesh data is encapsulated in a MeshData object.

3.5.1 MeshRenderer	

The MeshRenderer class is a Component that references both a Mesh object and
Material objects. The main reason why a Mesh is not a Component is to support
Mesh objects to be shared across several components (note that components cannot be
shared – they only have one owning GameObject).

MeshRenderer uses multiple materials to support different materials for each sub-
mesh.

The MeshRenderer component implements the render method that binds the materials
and mesh objects and renders the mesh object.

3.5.2 MeshData	

The MeshData objects contains the geometry and other data that the Mesh object uses.
WebGL does not give semantic meaning to vertex attributes – they are only values sent to
the vertex shader. KickJS on the other hand do add semantic value to certain vertex
attribute names. This simplifies binding of meshes to shaders (but do require that shaders
uses the predefined names).

The following lists the vertex attributes supported by the MeshData object.

Vertex attribute name (in
MeshData and in shader)

Data type Description

vertex Float Vec3 The vertex position. This
will be converted to
homogeneous coordinates
(x,y,z,1.0)

normal Float Vec3 The normal to the vertex

tangent Float Vec4 The tangent to the vertex

40 WebGL	
 based	
 3D	
 Game	
 Engine	

Morten	
 Nobel-­‐Jørgensen,	
 Master	
 thesis	
 in	
 Games,	
 IT	
 University	
 of	
 Copenhagen,	
 2012	

Feedback:	
 http://blog.nobel-­‐joergensen.com/2012/03/30/webgl/	
 	

Vertex attribute name (in
MeshData and in shader)

Data type Description

uv1 Float Vec2 The primary texture
coordinate

uv2 Float Vec2 The secondary texture
coordinate

int1 .. int4 Integer Vec1-4 Generic integer fields of
size (1,2,3,4)

color Float Vec4 Vertex colour

Table 2 Vertex attribute names

Using this fixed structure makes it much easier to create and reuse shaders across
applications, since the mapping of vertex attributes is straightforward.

It is important to note that only the vertex attributes used by the shaders needs to be
specified. Another important thing is that when developing custom shaders, you can use
the vertex attributes to whatever you want (such as using the colour attribute to store
temperature instead).

Sometimes mesh data may be provided without normal and tangent information. For
situations where the normal or tangent information is needed but not provided the class
has two methods for re-computing normal and tangent information based on the geometry.

3.5.3 3D	
 model	
 importers	

KickJS can import two widely used 3D formats:

• Wavefront obj: This is one of the most simple and widespread formats for 3D
models. It is a text based data format. KickJS supports loading polygon models
from an OBJ file including texture coordinates and normal. OBJ may also contain
lines and NURBS-surfaces; these are not imported by KickJS.

• Collada (dae-files): Collada is an XML-based format for interchanging 3D data
between applications. Collada is an open format originally created by Sony and is
now maintained by the Khronos group. The Collada format is huge and complex,
so KickJS only supports the most commonly used features for 3D models, which
includes triangle meshes, texture coordinates, normal, tangent, and scene
hierarchy.

External models can be imported from a Wavefront obj-file or a Collada dae-file at any
time in a game. However it is encouraged to convert the model to binary MeshData
when building the game. The binary MeshData has the same memory layout as used on
the GPU, which make them very fast to load.

41 WebGL	
 based	
 3D	
 Game	
 Engine	

Morten	
 Nobel-­‐Jørgensen,	
 Master	
 thesis	
 in	
 Games,	
 IT	
 University	
 of	
 Copenhagen,	
 2012	

Feedback:	
 http://blog.nobel-­‐joergensen.com/2012/03/30/webgl/	
 	

3.6 Serialization	

In KickJS serialization is used in multiple parts of the engine. The most important parts
are serialization of project assets, scene object and mesh-data.

The serialization is used heavily be the KickJS Editor when loading and saving projects.
The KickJS Editor will be described in chapter 4.

3.6.1 Unique	
 identifier	

Objects in JavaScript are uniquely identified by their reference which is essentially is an
encapsulated memory pointer. This works well when working with runtime objects, but
when serializing a JavaScript object you will need to be able to identify objects uniquely
to be able to restore object relations correctly when deserializing.

The KickJS engine does this by assigning a unique id (uid) to all assets, game objects
and components. The unique id generator is a number starting from 1 and increased with
one every time a new id is needed.

When serializing a project the maximum unique-id is also saved to the serialization and
restored upon deserialization.

3.6.2 Serialization	
 of	
 project	
 assets	

The Project class maintains assets used in a project. This class contains a list of asset
descriptions, which includes the type of asset (class name), a uid and a configuration of
the asset. All assets should have a constructor that takes two parameters: a reference to
the KickJS engine and a JSON configuration, which is used when deserializing the
objects. An asset object should also have a toJSON method that returns a configuration
object in JSON format.

Serialization and deserialization of project assets is straight forward, since each asset is
self-contained and does not reference other project assets (with the exception of the
Scene asset discussed below).

UML 2 Usage of uids in project

42 WebGL	
 based	
 3D	
 Game	
 Engine	

Morten	
 Nobel-­‐Jørgensen,	
 Master	
 thesis	
 in	
 Games,	
 IT	
 University	
 of	
 Copenhagen,	
 2012	

Feedback:	
 http://blog.nobel-­‐joergensen.com/2012/03/30/webgl/	
 	

3.6.3 Serialization	
 of	
 scene	
 objects	

The Scene object contains all GameObjects on the scene including all Components
for each GameObjects. The GameObjects of a scene is just a list, but the
components used in a scene can reference other
Assets, GameObjects, or Components.
This gives a graph structure, where a little more
care needs to be taken when serializing and
deserializing.

Serialization of Scene objects is also done to
JSON formatted objects. When serializing the
components, all references to other Assets,
GameObjects or Components, the reference
is replaced with a reference object that contain
the type and uid.

Deserializing the scene happens in two phases:

1. GameObjects and Components are deserialized. But the configurations of
the Components are not applied to the Component objects, since they may
contain references to objects not initialized yet.

2. When all GameObjects and Components are constructed the configuration of
all Components are applied. This includes replacing any reference object with
reference to the actual object.

Serialization of user-defined objects is also supported. The object then needs to expose all
its properties and to have a toJSON method.

3.6.4 Serialization	
 of	
 MeshData	

Serialization of Project and Scene both used JSON. This made sense since the data
was very hierarchical and contained a lot of structural information.

MeshData on the other hand consist mainly of arrays with floating point numbers and
arrays with integer numbers. For this reason KickJS uses ArrayBuffers and
ArrayBufferViews to store MeshData27.

To serialize the MeshData into binary data a chunk-based scheme is used. The chunk
functionality is encapsulated in the class ChunkData.

27 ArrayBuffers and ArrayBufferViews (such as Uint8Array and Float32Array), also
known as Typed Arrays, are a new way to work with binary data and data types in JavaScript.

Scene	

GameObject	

Component	

Component	

GameObject	

Component	

Component	

Component	

GameObject	
 Component	

Figure 9 Scene structure

43 WebGL	
 based	
 3D	
 Game	
 Engine	

Morten	
 Nobel-­‐Jørgensen,	
 Master	
 thesis	
 in	
 Games,	
 IT	
 University	
 of	
 Copenhagen,	
 2012	

Feedback:	
 http://blog.nobel-­‐joergensen.com/2012/03/30/webgl/	
 	

 The chunk layout is as follows:

Table 3 Data layout of chunk data and chunk

The data types supported in a chunk are all String, Number, and
ArrayBufferViews (Uint8Array, Float32Array, etc.). String and Number
chunks are implemented with simple wrapper functions that convert strings into UTF8
encoded arrays and numbers into a Float64Array.

Padding is added to arrays so that data is always aligned with 8 bytes. This is required for
ArrayBufferViews to work in all cases.

A benefit of storing mesh data is faster loading, since data is stored the same way on disk
and in memory. Another benefit is the size of the data. By using the binary KickJS format
over JSON, the file-size is reduced with approximately 50%28.

3.7 Materials	
 and	
 Shaders	

In KickJS the Shader object is responsible for loading and compiling shaders.

KickJS add a few extensions of GLSL shaders:

• #pragma include <filename>. Allow you to include KickJS shader
functionality (such as lights)

• Auto mapping of predefined keywords: A lot of keywords are used in several
shaders, such as normal-matrix, model-view-matrix, etc. The engine will set these
keywords automatically during rendering. The full list is described in Table 2
page 40.

• Defines the GLSL constant LIGHTS (Integer) based on the current configuration
of the engine (cannot be modified runtime). The constant defines the maximum
number of point lights.

28 See chapter 7.2.4 in Appendix

Chunk Data (container of chunks)
Magic Number
Uint16

Version number
 Uint16

Number of chunks
Uint32

Chunk data
N bytes

Chunk
Chunk id
Uint16

Chunk type
Uint16

Chunk data length
Uint32

Chunk data
N bytes

Chunk padding
0-7 bytes

44 WebGL	
 based	
 3D	
 Game	
 Engine	

Morten	
 Nobel-­‐Jørgensen,	
 Master	
 thesis	
 in	
 Games,	
 IT	
 University	
 of	
 Copenhagen,	
 2012	

Feedback:	
 http://blog.nobel-­‐joergensen.com/2012/03/30/webgl/	
 	

Besides encapsulating the vertex shader and the fragment shader, the Shader class is
also responsible for changing the WebGL states that relates to rendering, such as
blending, Z-test and face culling.

After a shader has been compiled and linked, the shader program is automatically
inspected and the available uniform locations and vertex attribute locations are saved in
the shader. These values are used when the shaders are bound.

The Shader class also has a renderOrder attribute, which makes it possible to
define in what orders the shaders should be rendered.

Finally the Shader can also contain a default configuration, which makes it easy to bind
materials in cases where the material configuration doesn’t match the shader.

Shaders can be created using the KickJS Shader editor, which will be discussed in
chapter 4.6.2.

3.7.1 Materials	

Materials are instances of shaders, providing values for the uniform variables of the
shaders. The values are stored in the uniform object and the name of the value should
match the uniform name in the shader.

Materials supports tree types of uniforms:

• Floating point values: Vec2, vec3, vec3, mat2, mat3, mat4, float
• Integer values: Vec2i, vec3i, vec4i, mat2i, mat3i, mat4i, integer, boolean (integer

with 0 or 1 value)
• Textures: 2D textures and cube map textures

Shaders are usually always used together with a material.

3.7.2 Built-­‐in	
 shaders	

Shader development is very low-level and requires a deep understanding of render
pipeline, light equations and 3D math.

To ease development KickJS includes the following predefined shaders:

Unlit: The colour is purely based on the specified colour and texture.

Diffuse: The colour is based on the specified colour and the texture and
lighting based on Lambert’s light equation. This should be used for
materials with diffuse reflections.

45 WebGL	
 based	
 3D	
 Game	
 Engine	

Morten	
 Nobel-­‐Jørgensen,	
 Master	
 thesis	
 in	
 Games,	
 IT	
 University	
 of	
 Copenhagen,	
 2012	

Feedback:	
 http://blog.nobel-­‐joergensen.com/2012/03/30/webgl/	
 	

Specular: The colour is based on the specified colour and the texture
and lighting based on the Phong light equation. The specular highlight
can be adjusted in colour and in size. This should be used for reflective
materials, such as cars, eyes and wet surfaces.

These shaders all exist in both an opaque and a transparent version.

The engine also uses a number of internal shaders. The internal shaders are used for
picking and for fallback shader (error shader) when another shader is unable to compile.

3.8 Input	
 management	

To create interactive applications such as games, you need input from the user. KickJS
supports two kinds of input: keyboard input and mouse input.

Both input managers are only initialized if it is used. This means that if a game only uses
mouse input the KickJS engine will not listen for key events.

3.8.1 Keyboard	
 input	

KickJS implements a state based keyboard input, where the browser DOM only provides
event based keyboard input. The reason why a state based approach is used is that
keyboard input in games is often interested in knowing whether a key is being pressed.

KickJS implements keyboard input the following way. The KeyInput object keeps
internally three lists:

• keyDown: A list of keys that has been pressed this frame
• keyUp: A list of keys that has been released this frame
• key: A list of keys that is being pressed

The object also contains methods for getting the state for a particular key. The internal
lists are updated each frame:

• KickJS listens for key events on the document.
o On key down: The key-code is added to the keyDown list and the key list
o On key up: The key-code is added to the keyUp list and removed from

the key list
• During the update phase of the components, the scripts can query the object for

key states.
• After the update phase the keyDown and keyUp list are cleared.

This approach also guarantees that script code dealing with key input runs during the
update phase, where using the event-based approach the scripts would be run outside the
update phase while making the programming more predictable.

46 WebGL	
 based	
 3D	
 Game	
 Engine	

Morten	
 Nobel-­‐Jørgensen,	
 Master	
 thesis	
 in	
 Games,	
 IT	
 University	
 of	
 Copenhagen,	
 2012	

Feedback:	
 http://blog.nobel-­‐joergensen.com/2012/03/30/webgl/	
 	

3.8.2 Mouse	
 input	

The mouse input is state based and implemented the same way as KeyInput object.

The mouse input object gives access to information about movement (delta position),
position, button status and scroll wheel status (horizontally and vertically). The mouse
position is relative to the top left corner of the WebGL canvas element.

One of the upcoming features in new web browsers is the ability to lock mouse (with the
Mouse Lock API). This feature can lock the mouse position, while still sending mouse
events to JavaScript. This makes it easy to implement games like first person shooters,
without risking that the user moves and click outside the game. The Mouse Lock API is
currently only available in the nightly builds of Chrome and Firefox, and for this reason it
has not yet been implemented in KickJS.

3.8.3 Picking	

One commonly used feature when working with 3D scenes is the ability to pick objects in
the scene with the mouse.

In KickJS I have implemented a simple picking functionality that works the following
way:

• A script invokes the pick method on the Camera object with the position and a
callback function. This method call is added to a picking queue.

• On camera rendering if the picking queue is not empty, the scene will be rendered
to a picking texture (using the RenderTexture class) with a replacement
shader that writes GameObject unique-id packed into the RGBA values of the
texture.

• For each pick the pixels from the picking texture are sampled and the RGBA
value are converted to a uid.

• Each object found in picking is added to the KickJS event queue and will call the
callback function when executed.

The normal use case for picking is to select objects with mouse, however the technique
can also be used for visibility tests.

Based on the collision point the KickJS engine could be extended to return the world-
space position, the UV coordinates or other information available in the shader. For this
to work, you would have to add another render pass that save the data to a texture and
then sample that texture29.

29 WebGL only supports binding one colour texture to Frame Buffer Objects. In OpenGL you would bind a
texture to the depth buffer of the Frame Buffer Object, and only need one render pass.

47 WebGL	
 based	
 3D	
 Game	
 Engine	

Morten	
 Nobel-­‐Jørgensen,	
 Master	
 thesis	
 in	
 Games,	
 IT	
 University	
 of	
 Copenhagen,	
 2012	

Feedback:	
 http://blog.nobel-­‐joergensen.com/2012/03/30/webgl/	
 	

3.9 Math	
 library	
 and	
 the	
 Transform	
 object	

3D math such as matrices, vectors and quaternions are essential for any 3D game engine.
The math library used in KickJS is based on glMatrix developed by Brandon Jones30. The
math library is optimized for speed and carefully avoids allocating objects.

UML 3 Transform class

One of the main usages of the math library is in the Transform component.
Transform objects represents the spatial position of an object in the scene.

The transform is always represented using local-position, local-rotation and local-scale.
Internally the rotation is stored as a quaternion. For convenience a rotation property using
Euler’s angle is also exposed and will translate between the two representations. A matrix
representing the transform can be obtained using the method getLocalMatrix(). To
speed things up the transform matrix is cached when computed and will only be
recomputed if the position, rotation or scale is changed. This is being tracked using a
dirty flag. The same method is used for computing the inverse of the local transform.

The transform object may have a parent object, which makes its transformation relative to
its parent. For convenience the object exposes two properties for reading and writing the
global position and rotation. Note that there is not global scale, since this may be non-
linear due to parent rotation. The object also exposes two methods for reading the global
matrix and its inverse. Global matrices are cached the same way as local matrices, except
that dirty flag is set when its local matrix is dirty or any parent is dirty.

If no parent exist the global methods and properties is the same as their local counterparts.

3.10 Future	
 improvements	

KickJS is still a young game engine and a lot of more advanced topics can be added to
the engine.

30 Available under a BSD-like license here: https://github.com/toji/gl-matrix

48 WebGL	
 based	
 3D	
 Game	
 Engine	

Morten	
 Nobel-­‐Jørgensen,	
 Master	
 thesis	
 in	
 Games,	
 IT	
 University	
 of	
 Copenhagen,	
 2012	

Feedback:	
 http://blog.nobel-­‐joergensen.com/2012/03/30/webgl/	
 	

3.10.1 Sound	

Sound is one of the cornerstones in any game. Unfortunately sound support in a browser
is still in the works. There exists a number of sound APIs (such as the audio-tag and the
Web Audio API), but not all major browsers do support them. A related problem is the
mixed support for audio file format. Currently there doesn’t exist one file-format
supported by all major browsers. Finally the audio support the browsers have today is
mainly focused around playing music or sound clips. To add audio support to a game,
you would need audio to play instantly, multiple times, simultaneously and possible with
some effect that can be tweaked by the game engine. Many HTML5 games today use the
Flash plugin as a workaround to get good audio support31.

3.10.2 Physics	
 engine	

Today the majority of the 3D games use physics engines as a part of the game engines. A
physics engines is responsible for two important things:

• Collision detection: The ability to know when two colliders intersect (such as a
mesh or a simplified physics placeholder)

• Rigid body dynamics: How rigid body move and intersect over time under
influence of forces32.

3.10.3 Animation	
 systems	

Animation systems in 3D game engines usually includes one or more of the following
sub systems:

• Rigid hierarchical animations used for animating mechanical things such as
robots, cars and doors.

• Per-vertex animations where each vertex position is animated by an artist and
the engine interpolates between these positions

• Skinned animations where the animation is driven by a skeleton constructed by
rigid bones. The artist will animate the skeleton and the engine animates the
position of the skin (the mesh).

3.10.4 Deferred	
 rendering	

KickJS uses forward rendering, meaning that when rendering an object the result are
written to the frame buffer as colours. This is the fastest and most simple approach for
rendering 3D graphics in the general case.

In deferred rendering, you would render the information about the object to different
channels of an off-screen texture. This information includes colour (also known as

31 Mentioned in [Webber11]
32 [Gregory09] page 595

49 WebGL	
 based	
 3D	
 Game	
 Engine	

Morten	
 Nobel-­‐Jørgensen,	
 Master	
 thesis	
 in	
 Games,	
 IT	
 University	
 of	
 Copenhagen,	
 2012	

Feedback:	
 http://blog.nobel-­‐joergensen.com/2012/03/30/webgl/	
 	

albedo), normal in screen-space, emission, specular values, depth, etc. These off-screen
textures are known as the G-buffer. The final rendered images is then composed using
one or more render passes that uses the G-buffer. The benefits of using this technique is
that you now have information about the full rendered scene, which makes it easy to add
post-processing effects like ambient occlusion, edge detection, field-of-view and bloom.

One problem with the WebGL compared to OpenGL, is that WebGL does not support
multiple render targets. This means that in order to render the G-buffer; you would have
to render the scene multiple times, one for each texture of the G-Buffer. Alternative it is
possible to pack the G-buffer into a floating-point texture.

Currently KickJS does support multiple renderings (using multiple cameras) as well as
render targets, which writes to an off-screen texture. This means that deferred render
already is possible in KickJS if the programmer writes the deferred rendering shaders.
But to make deferred rendering easy to use the engine would need to be restructured
considerably and should bundle the needed shaders the same way as the Phong shaders
are bundled today.

3.10.5 Static	
 geometry	
 batching	

Scenes in a typical game often consist of a large number of static geometric objects (such
as walls, buildings, etc.) and a smaller number of movable geometric objects (cars,
animals and humans).

A large number of geometric objects can result in poor performance due to the increased
number of draw-calls. To reduce the number of draw-calls static geometry can be batched
together in one draw-call if the following conditions are met:

• Must have same shader
• Must use same material

The geometry batching optimization should try to batch only objects close to each other
to make view volume culling behave well.

The actual batching will transform the vertex position and vertex normals into world
space and then concatenated together. If different textures are used, the batching
optimizer can also combine these textures into texture atlases, by combining the textures
and updating the texture coordinates accordingly33.

Static batching is usually performed in a pre-processor step when building the game.

33 [Pharr05] has a discussion about different batching strategies in ”Chapter 3: Inside Geometry Instancing”

50 WebGL	
 based	
 3D	
 Game	
 Engine	

Morten	
 Nobel-­‐Jørgensen,	
 Master	
 thesis	
 in	
 Games,	
 IT	
 University	
 of	
 Copenhagen,	
 2012	

Feedback:	
 http://blog.nobel-­‐joergensen.com/2012/03/30/webgl/	
 	

KickJS would benefit a lot from adding static batching. The MeshData class already
contains methods for combining geometry, but ideally the static batching should work
out-of-the-box.

3.11 Summary	

In this chapter I have described the implementation details of the KickJS engine that I
have implemented during my thesis.

The KickJS is a component based game engine, which makes it easy to extend and
customize to any game. The engine uses mesh optimized for the memory layout of the
GPU, and the engine provides both a low level and a high level access to shaders, to ease
development while still supporting advanced custom shaders.

51 WebGL	
 based	
 3D	
 Game	
 Engine	

Morten	
 Nobel-­‐Jørgensen,	
 Master	
 thesis	
 in	
 Games,	
 IT	
 University	
 of	
 Copenhagen,	
 2012	

Feedback:	
 http://blog.nobel-­‐joergensen.com/2012/03/30/webgl/	
 	

4 KickJS	
 Editor	
 –	
 A	
 scene	
 editor	
 for	
 KickJS	

In this chapter I will discuss my implementation of a scene editor for KickJS. The editor
is available online at the following website:

http://editor.kickjs.org/

Image 4 Screenshot of the scene editor

The motivation for building a scene editor is to make scene composition an intuitive and
visual task, instead of needing to hardcode the scene in JavaScript. This way an artist or a
level designer can build the scene without involvement of programmers.

The KickJS editor also allows you create small WebGL applications without any coding
involved. This can be used as a web for artists for publishing their 3D models to
webpages.

The editor is creating scenes that run in the KickJS game engine, but the editor itself also
uses the KickJS for all its rendering, scene navigation and object picking. The GUI
elements of the editor is created using YUI 3.534.

34 http://yuilibrary.com/ YUI an open source JavaScript and CSS framework for building web applications
(Open source under BSD license)

52 WebGL	
 based	
 3D	
 Game	
 Engine	

Morten	
 Nobel-­‐Jørgensen,	
 Master	
 thesis	
 in	
 Games,	
 IT	
 University	
 of	
 Copenhagen,	
 2012	

Feedback:	
 http://blog.nobel-­‐joergensen.com/2012/03/30/webgl/	
 	

The KickJS editor is in its current state more a proof-of-concept than a full-fledged game
development environment.

4.1 Usability	

The scene editor has the following UI elements:

• Main buttons: Save, Run and Build Project. These buttons exposes the main
functionality of the application.

• Content window: This tabbed pane shows the main content of the application.
The most important content is the scene view that let you look into the scene.

• Project assets: List the current assets used in the project (excluding any built-in
asset). On top of the project list is a menu bar, with access to modifying assets or
importing new assets.

• Scene objects: Lists the game objects in the current scene. Over the list is a menu
that let you create, rename or delete any game object. The content of the scene
objects will change dependent of which scene is active.

• Property editor: This shows the components of the selected game objects or the
properties of the selected asset.

4.2 Scene	
 view	

The scene view let you navigate through the scene and let you construct the scene.

The way the scene view is implemented is loading the existing scene and decorating it.
The following objects are added to the scene:

• A virtual camera including a camera controller, which allows you to navigate
the scene using the mouse.

• A grid mesh object that visually shows the ground level.
• A component selection listener that listens for mouse clicks and uses picking to

see if any object is selected.

These objects are filtered away when the scene is build and exported.

4.3 Property	
 editor	

The property editor is responsible for displaying the properties of an object. For project
assets the current properties are displayed, and for GameObjects the components and
the properties of the components are displayed.

53 WebGL	
 based	
 3D	
 Game	
 Engine	

Morten	
 Nobel-­‐Jørgensen,	
 Master	
 thesis	
 in	
 Games,	
 IT	
 University	
 of	
 Copenhagen,	
 2012	

Feedback:	
 http://blog.nobel-­‐joergensen.com/2012/03/30/webgl/	
 	

UML 4 Property editor GUI

The property editor GUI component can contain one or more sections. Each section is
either a Component object or a ProjectAsset. The sections are built using the
addXXX-methods of the PropertyEditorSection object.

To find out how each component or asset should be built, one of the following methods
are used:

• If the object has a createEditorGUI method, this method is invoked and is
responsible for layout of the component. Such methods for most KickJS objects
are defined in the editor.

• Otherwise the component is created by inspecting the objects properties. Since
JavaScript is a dynamically typed language it is not always possible to find the
correct GUI component.

Changes to the object will be reflected to the actual object either instantly or when focus
is lost.

4.4 Persistence	

To support persistent data, the following model is used for storing data:

UML 5 Design of the persistency model for KickJS Editor

This model is related to how objects are serialized in the KickJS engine. The project is
serialized to the resource with id 0, and all other assets (such as textures, mesh, shaders
and scripts) are serialized to a resource based on the objects unique id. The project works
as meta-data describing all assets in the project.

The actual storage of the model is either server based or using the browser’s local storage.

54 WebGL	
 based	
 3D	
 Game	
 Engine	

Morten	
 Nobel-­‐Jørgensen,	
 Master	
 thesis	
 in	
 Games,	
 IT	
 University	
 of	
 Copenhagen,	
 2012	

Feedback:	
 http://blog.nobel-­‐joergensen.com/2012/03/30/webgl/	
 	

4.4.1 Server	
 based	
 persistence	

The server-based persistence has been implemented using the Google App Engines
Datastore. Data are updated using asynchronous HTTP POST-request from JavaScript,
and downloaded using normal GET-requests.

The Google App Engines Datastore uses a distributed architecture very different from a
relational database. It stores entities each with a set of properties, very similar to
JavaScript objects. The database schema is modelled based on the storage model
described above.

Due to the cost of using the Google App Engines Datastore, server-based persistence is
not enabled per default. Instead local storage is the default storage option.

4.4.2 Local	
 storage	
 persistence	

Local storage is a new browser feature that allows web applications to store data locally
in the web-browser. Currently there is three APIs for persistent storage:

• Web SQL: An SQLite database instance that runs in the browser. Not supported
by Firefox.

• IndexedDB: A simple database API for storing large amount of data. Supported
by both Firefox and Chrome.

• Web Storage: Key-value storage for storing simple data. Supported by all new
browsers.

KickJS editor uses Web Storage for storing projects names and IndexedDB for storing
resources.

Binary data are packed into number arrays, since IndexedDB does not support binary data
(or binary Blobs) in current browser versions.

Local storage can store up to 5 MB, but can be expanded if the application requests it and
the user accepts the request.

4.5 Build	
 and	
 download	

A game written in KickJS consists of the following types of files:

• HTML: A web page hosting the game.
• JavaScript: The KickJS library, some source code for starting the game as well

as game scripts
• Textures: Image files in formats that browsers support
• Shader source code: For custom shaders not bundled with the engine

55 WebGL	
 based	
 3D	
 Game	
 Engine	

Morten	
 Nobel-­‐Jørgensen,	
 Master	
 thesis	
 in	
 Games,	
 IT	
 University	
 of	
 Copenhagen,	
 2012	

Feedback:	
 http://blog.nobel-­‐joergensen.com/2012/03/30/webgl/	
 	

• 3D models: Models in the binary KickJS format

KickJS applications must be executed from a webserver. For convenience a tiny Java
based web-server is included in the build35.

In the build process the project description is modified to fetch assets from relative URLs.
Then a zip archive is created with all the resources and finally the browser is asked to
download the archive.

All these steps happen inside the browser – not on the server as one might expect. The
zip-archive is generated using the JavaScript library JSZip36 and the browser download is
using the Flash plugin Downloadify37 (downloading client generated data is not well
supported by Firefox).

4.6 Future	
 improvements	

In this chapter I will discuss features that could be implemented in future versions of the
KickJS Editor.

4.6.1 JavaScript	
 editor	

The next thing that will be implemented in the KickJS Editor will be a code editor. This
will allow users to create full WebGL games inside the browser.

The code editor would be able to edit new script components saved as assets in the
project view. These script components can then be added to GameObjects in the
scene.

When building the game, the scripts will be bundled with the rest of the code.

The actual code editor will use the Ace (a web based code editor).

4.6.2 Shader	
 editor	

One of the example applications implemented in KickJS is a GLSL Shader Editor.

35 https://github.com/mortennobel/SimpleWebServer
36 http://jszip.stuartk.co.uk/
37 https://github.com/dcneiner/downloadify.

56 WebGL	
 based	
 3D	
 Game	
 Engine	

Morten	
 Nobel-­‐Jørgensen,	
 Master	
 thesis	
 in	
 Games,	
 IT	
 University	
 of	
 Copenhagen,	
 2012	

Feedback:	
 http://blog.nobel-­‐joergensen.com/2012/03/30/webgl/	
 	

Image 5 KickJS shader editor

The KickJS Shader Editor is an interactive GLSL editor that let you see the result while
you write the shader. The editor supports the built-in uniforms from KickJS and a simple
property editor for changing uniforms. Under settings it is possible to change scene
properties, such as geometry, perspective, and light.

The KickJS Shader Editor is not yet a part the of KickJS editor. The shader editor was
developed to help development of internal shaders in KickJS and is targeted advanced
users, whereas the KickJS editor currently targets beginners and intermediate users. For
users who want’s to create custom shaders for KickJS, the shader editor will still be a
great help.

The editor is build using the Ace – a web based code editor38.

4.6.3 Node	
 based	
 editor	

One commonly used approach in the game industry is to use node editors to replace
programming. This has two benefits:

• Game designers with no programming skills can do simple scripting
• Node editors can in some cases give a better overview over a solution and how

parts of the solution work together.

38 http://ace.ajax.org/ - Open Source under MPL/LGPL/GPL

57 WebGL	
 based	
 3D	
 Game	
 Engine	

Morten	
 Nobel-­‐Jørgensen,	
 Master	
 thesis	
 in	
 Games,	
 IT	
 University	
 of	
 Copenhagen,	
 2012	

Feedback:	
 http://blog.nobel-­‐joergensen.com/2012/03/30/webgl/	
 	

Two examples of node editors that I find working particular well is from the Unreal
Development Kit:

Image 6 UDK’s Kismet Script Editor (left) and material editor (right)

4.6.4 Collaborative	
 game	
 development	

It would be obvious to extend KickJS Editor to support multiple people working on the
same game simultaneously, but even through both web-browsers and its JavaScript APIs
are created with distributed system in mind, it is still not trivial to create such system.
You need to take care of distributed computing problems such as concurrency, unreliable
network connections and scalability.

For this reason collaborative game development is not implemented in the KickJS Editor.

4.6.5 Building	
 other	
 than	
 WebGL	
 games	

When a game engine provides a well-defined API it is easy to port games to other
platforms. It should not be hard to use a JavaScript engine like NodeJS to port the engine
runtime to other platforms that will not have WebGL support in near future (such as
Windows Phone). Once the engine runtime has been ported any game created in the
engine should be able to run.

4.7 Summary	

The KickJS Editor is a tool for creating scenes to use in KickJS applications and games.
But at the same time the editor is an example of how KickJS can be used for creating
advanced 3D applications.

The editor uses the new HTML5 APIs for implementing client-side persistence and uses
the YUI 3 for building the advanced GUI elements of the editor.

58 WebGL	
 based	
 3D	
 Game	
 Engine	

Morten	
 Nobel-­‐Jørgensen,	
 Master	
 thesis	
 in	
 Games,	
 IT	
 University	
 of	
 Copenhagen,	
 2012	

Feedback:	
 http://blog.nobel-­‐joergensen.com/2012/03/30/webgl/	
 	

5 Benchmark	

In this chapter I will give an estimate of JavaScript and WebGL performance in general.
The estimate will be based on a benchmark on JavaScript vs. C++ and a benchmark on
KickJS vs. Unity.

All benchmarks performed in this chapter are micro benchmarks. They should give a hint
on the general performance, but micro benchmarks may not uncover problems of large
applications and games.

One of the trickier areas to benchmark is memory-access patterns. In C++ the
programmer can optimize their data for efficient processing using data oriented design –
see [Llopis09] for a further discussion. This is much more difficult in JavaScript since the
programmer has no control over how the heap is organized39. I will not benchmark
memory access patterns directly, but they are likely to have influence on test results.

Unless other is specified the benchmarks is run on a 2.2 GHz Intel Core i7 with 8 GB
1333 MHz DDR3 and a AMD Radeon HD 6750M 1024 MB. All tests are preformed
using Mac OS X 10.7.3.

5.1 JavaScript	
 vs.	
 C++	

This chapter tries to answer what performance can be achieved running JavaScript
compared to C++ code.

5.1.1 The	
 Computer	
 Language	
 Benchmarks	
 Game	
 	
 	

The Computer Language Benchmarks Game40 is a website which tries to compare several
languages to find out the runtime characteristics on different programming languages41.

http://shootout.alioth.debian.org/

The websites compares a number of different micro benchmarks implemented in different
languages. The benchmarks problems are typical computer science problems ranging
from binary trees to Mandelbrot computations.

It is important to realize that the programs may not be evenly optimized in the different
languages. The benchmarks are performed on an Intel Q6600 single core CPU running
Ubuntu.

39 To a certain degree this is still possible in JavaScript by using large ArrayBuffers to store objects.
40 Also known as ”The Great Computer Language Shootout”
41 Note that you cannot benchmark programming languages or programming language implementations,
only programs written in different programming languages. This adds a certain uncertainty to the test
results.

59 WebGL	
 based	
 3D	
 Game	
 Engine	

Morten	
 Nobel-­‐Jørgensen,	
 Master	
 thesis	
 in	
 Games,	
 IT	
 University	
 of	
 Copenhagen,	
 2012	

Feedback:	
 http://blog.nobel-­‐joergensen.com/2012/03/30/webgl/	
 	

The computations in C++ uses either double precision floats or integers, which maps well
to the JavaScript Number and the JavaScript Engine SMI type (Small Integer – 31 bit
unsigned integer).

Test result:

Image 7 JavaScript (V8) compared to GCC C++ (See 7.2.1 for more details)

Evaluation	
 of	
 test	
 result	

In average the JavaScript spend 3 times as long on solved the same problem. The
memory is likewise around three times higher.

The one case where JavaScript beats C++ performance is a test case with regular
expression matching and replacement, which is a native feature of JavaScript and hence
very optimized.

At the other end of the spectrum, where JavaScript performs up to100 times slower, I
believe that the main reason is that the JavaScript source code it not optimized as much as
the C++ code.

It is interesting to note the correspondence between memory and time. This could
indicate that one reason that JavaScript has lower performance is due to inefficient
memory usage.

5.1.2 Math	
 library	
 benchmark	

When working with 3D graphics one of the most important features is a high
performance math library.

In this benchmark I will compare the performance between two widely used math
libraries:

60 WebGL	
 based	
 3D	
 Game	
 Engine	

Morten	
 Nobel-­‐Jørgensen,	
 Master	
 thesis	
 in	
 Games,	
 IT	
 University	
 of	
 Copenhagen,	
 2012	

Feedback:	
 http://blog.nobel-­‐joergensen.com/2012/03/30/webgl/	
 	

• glMatrix: High performance JavaScript matrix and vector operations for WebGL
created by Brandon Jones. It is the same library that is used in KickJS.

• GLM: OpenGL Mathematics (GLM) is a C++ mathematics library for graphics
software.

I have written a benchmark based on a WebGL Matrix Benchmark and implemented the
same tests in C++. The benchmark suite is available here:

https://github.com/mortennobel/glMatrix-vs-GLM-Benchmark

The benchmark uses both single and double precision floats.

Test results:

Image 8 glMatrix (JavaScript V8) vs. GLM (GCC C++)

	

GCC	
 4.2	
 32	
 bit	
 float	
 GCC	
 4.2	
 64	
 bit	
 float	
 V8	
 3.7.12.22	

inverse	
 197.7	
 284.6	
 63.5	

inverseMat3	
 97.5	
 143.6	
 75.9	

rotationArbitraryAxis	
 137.1	
 133.4	
 154.2	

multiplication	
 83.7	
 87.9	
 119.1	

translation	
 8.7	
 8.6	
 48.9	

transpose	
 	
 10.0	
 9.7	
 63.7	

vectorTransformation	
 12.0	
 11.9	
 224.3	

0.10	

1.00	

10.00	

100.00	

Ru
n`

m
e	

re
la
`v

e	

to
	
 G
CC
	
 	

(1
.0
	
 is
	
 G
CC

	
 p
er
fo
rm

an
ce
)	

glMatrix	
 (JavaScript	
 V8)	
 vs.	
 GLM	
 (C++	
 GCC)	

V8	
 3.7.12.22	
 vs	
 GCC	
 4.2	
 32bit	
 V8	
 3.7.12.22	
 vs	
 GCC	
 4.2	
 64bit	

61 WebGL	
 based	
 3D	
 Game	
 Engine	

Morten	
 Nobel-­‐Jørgensen,	
 Master	
 thesis	
 in	
 Games,	
 IT	
 University	
 of	
 Copenhagen,	
 2012	

Feedback:	
 http://blog.nobel-­‐joergensen.com/2012/03/30/webgl/	
 	

scale	
 3.2	
 3.3	
 145.9	

Table 4 Runtime in milliseconds of 2.000.000 operations

Evaluation	
 of	
 test	
 result	

In general the test result shows that glMatrix math library runs approximately 10 times
slower than the GLM library.

One noteworthy observation is that glMatrix actually is faster for computing the inverse.
One reason for this may be that inverse matrix methods in glMatrix supports calculating
the result in-place, whereas the GLM functions returns an inverse matrix.

For vector transformations and scale, the GML performs a lot faster (18x to 45x times). I
believe the reason for this is that GLM uses SIMD optimizations, and for this reason can
gain a performance boost.

5.2 KickJS	
 vs.	
 Unity	

In this chapter I will compare the KickJS game engine with the Unity game engine. The
Unity game engine is a commercial game engine with a lot of advance features. The
comparison between the two engines will be only of the core features and should give an
answer to what capabilities WebGL powered games have today and what we can expect
from the future from this technology. The goal of the comparison is not to find be best of
the two engines, this would be an uninteresting comparison where Unity would come out
as a clear winner.

The comparison is done by first listing features of the two engines side by side to get an
overview of the two technologies. Then a number of benchmarks will be evaluated to
highlight the performance characteristics of the two engines.

The tests are run using KickJS 0.3.1 running in Chrome 17.0.963.56 and Unity 3.4.2
running inside its editor.

5.2.1 Side	
 by	
 side	
 comparison	

Listed below is a very rough overview of some of the most basic features of the two
engines.

62 WebGL	
 based	
 3D	
 Game	
 Engine	

Morten	
 Nobel-­‐Jørgensen,	
 Master	
 thesis	
 in	
 Games,	
 IT	
 University	
 of	
 Copenhagen,	
 2012	

Feedback:	
 http://blog.nobel-­‐joergensen.com/2012/03/30/webgl/	
 	

5.2.2 Benchmark:	
 Unique	
 draw	
 calls	

Purpose	
 of	
 test	

 KickJS (WebGL) Unity

Platform Runs in browsers with WebGL
support. This includes PCs, and
few mobile phones and tables.

Runs in PC browsers, on Mac and
Windows computers, on iOS/
Android devices, and on game
consoles (Wii, X-Box 360 and
PlayStation 3).

Graphics API Runs on top of WebGL, which
underneath may be powered by
OpenGL, OpenGL ES or
DirectX (using ANGLE).

Unity uses an abstraction layer
that supports OpenGL, OpenGL
ES and DirectX graphics
pipelines.

Shader language GLSL extended with a few
engine specific features (such as
file include and predefined
uniform mappings)

Unity uses their own shader
language ShaderLab, which
supports embedded Cg.
ShaderLab are internally being
translated to Cg and on OpenGL
platforms translated to GLSL.

Engine
language

JavaScript C++

Scripting
language

JavaScript C#, Unity Script (a JavaScript like
language) and Boo.

Scripting
runtime

JavaScript engine (Such as V8
for Chrome,)

The script engine is the Mono
runtime – an open source
implementation of the .Net
platform (including the .Net 2.0
libraries).

Rendering
pipeline

Forward rendering Forward rendering or deferred
rendering

Exposed low-
level graphics
API

Yes using a reference to the
WebGL Context.

Yes – using the GL object, which
emulates the OpenGL API.

Third party
libraries

Any JavaScript library DLL-libraries are supported.

63 WebGL	
 based	
 3D	
 Game	
 Engine	

Morten	
 Nobel-­‐Jørgensen,	
 Master	
 thesis	
 in	
 Games,	
 IT	
 University	
 of	
 Copenhagen,	
 2012	

Feedback:	
 http://blog.nobel-­‐joergensen.com/2012/03/30/webgl/	
 	

One important feature of any game engine or render engine is how fast the engine can
draw unique mesh instances. For each mesh instance the engine has to bind it to match
the current shader and then issue the draw call.

Figure 10 Sierpinsky Pyramid with recursion depth of 6

Description	
 of	
 test	
 case	

This test case uses the Sierpinsky Pyramid as a mesh instance (see Figure 10). The
geometry is copied to each mesh instance and therefor exists in the GPU memory
multiple times. This is done to simulate a more common use case where a scene has
different geometry. If the geometry had not been duplicated, both engines are smart
enough to only bind the geometry once.

The Sierpinsky Pyramid is created by recursive subdivision with a depth of 1. Usually
Unity would batch such draw calls, but this has been turned off to be able to compare
performance without batching. In this test we are interested in testing draw-calls, not how
well batching works (besides batching of geometry is currently not implemented in
KickJS).

The mesh instances are all put inside the view volume, to prevent the view volume
frustum to optimize the rendering (resulting in fewer draw calls).

Finally the viewport size is chosen to be 1x1, since we are not interested in the
performance of the fragment shader.

64 WebGL	
 based	
 3D	
 Game	
 Engine	

Morten	
 Nobel-­‐Jørgensen,	
 Master	
 thesis	
 in	
 Games,	
 IT	
 University	
 of	
 Copenhagen,	
 2012	

Feedback:	
 http://blog.nobel-­‐joergensen.com/2012/03/30/webgl/	
 	

Test	
 result	

Figure 11 Performance of unique draw calls

Evaluation	
 of	
 the	
 test	
 result	

In general the performance of the Unity engine is much higher (approximately a factor of
two to four). I believe the reason for this is the performance penalty of the WebGL /
JavaScript engine in contrast to the highly optimized C++ code in Unity.

5.2.3 Benchmark:	
 View	
 volume	
 culling	

Purpose	
 of	
 test	

In this test I will see the effect of using view volume culling (also known as view frustum
culling). In view volume culling geometry are culled way before the rendering, which
reduces the cost setting up the rendering on the CPU as well as the rendering cost on the
GPU.

0.0	

20.0	

40.0	

60.0	

80.0	

100.0	

120.0	

140.0	

160.0	

180.0	

1000	
 2000	
 3000	
 4000	
 5000	
 6000	

M
ill
is
ec
on

ds
	

Number	
 of	
 primi`ves	

Unique	
 primi`ves	
 	

(draw	
 calls)	

Unity	

KickJS	

65 WebGL	
 based	
 3D	
 Game	
 Engine	

Morten	
 Nobel-­‐Jørgensen,	
 Master	
 thesis	
 in	
 Games,	
 IT	
 University	
 of	
 Copenhagen,	
 2012	

Feedback:	
 http://blog.nobel-­‐joergensen.com/2012/03/30/webgl/	
 	

Image 9 View volume culling setup (screenshot from Unity)

Description of test case: The Sierpinsky Pyramid from the test case above is reused. But
in this setup the pyramids are uniformly distributed over a sphere around the view
frustum as shown in Image 9. The scene is rendered to a 500x500 buffer (fill-rate is not
going to be a bottle neck in this case).

Test	
 result:	

Evaluation	
 of	
 the	
 test	
 result:	

Both Unity and KickJS reduces the cost of rendering large scenes significant when using
view volume culling. The performance gain mainly comes from the cost of doing binding
the mesh and invoking the draw call.

0.0	

5.0	

10.0	

15.0	

20.0	

25.0	

30.0	

35.0	

40.0	

45.0	

50.0	

1156	
 1444	
 1764	
 2304	
 2704	
 3136	

M
ill
is
ec
on

ds
	

Number	
 of	
 primi`ves	
 in	
 scene	

Scene	
 rendering	
 with	
 	

view	
 volume	
 op`miza`on	

Unity	

KickJS	

66 WebGL	
 based	
 3D	
 Game	
 Engine	

Morten	
 Nobel-­‐Jørgensen,	
 Master	
 thesis	
 in	
 Games,	
 IT	
 University	
 of	
 Copenhagen,	
 2012	

Feedback:	
 http://blog.nobel-­‐joergensen.com/2012/03/30/webgl/	
 	

Unity clearly uses a more optimized for taking advantage of view volume culling. Unity
here performs 4-6 times faster.

5.2.4 Benchmark:	
 Material	
 changes	

Purpose of test: One of the most important things in the rendering is change of materials.
In complex scenes with many visible game objects, changing material can easy become a
bottleneck.

Description of test case: A number a game objects each with a mesh-renderer and a
sphere attached is put inside the view volume, which prevents any view volume culling.
Each mesh will be assigned a unique material with a random colour. All materials share
the same shader. By using different materials, Unity cannot make any batching of
geometry.

Image 10 Setup of material test

Test result:

67 WebGL	
 based	
 3D	
 Game	
 Engine	

Morten	
 Nobel-­‐Jørgensen,	
 Master	
 thesis	
 in	
 Games,	
 IT	
 University	
 of	
 Copenhagen,	
 2012	

Feedback:	
 http://blog.nobel-­‐joergensen.com/2012/03/30/webgl/	
 	

Evaluation of the test result: Currently Unity outperforms KickJS with a factor 2-4. I
believe that the KickJS engine could be optimized a bit to improve cost of binding
materials.

5.3 Summary	

JavaScript is significant slower that optimized code written in C++. With the current
generation of V8 the JavaScript runs in general between 3 to 10 times slower than C++
code. One reason JavaScript has worse performance may be caused by JavaScript using
more memory than C++.

Unity performs better than KickJS in all tests. One obvious reason is that Unity is much
more optimized than KickJS.

However I do find the performance of WebGL is reasonable and think it is a good choice
for 3D games that doesn’t need to push the hardware to the limits.

0.0	

20.0	

40.0	

60.0	

80.0	

100.0	

120.0	

140.0	

160.0	

180.0	

500	
 1000	
 1500	
 2000	
 2500	
 3000	
 3500	
 4000	
 4500	
 5000	

M
ill
is
ec
on

ds
	
 p
er
	
 fr
am

e	

Number	
 of	
 primi`ves	

Number	
 of	
 instances	
 	

with	
 unique	
 materials	

KickJS	

Unity	

68 WebGL	
 based	
 3D	
 Game	
 Engine	

Morten	
 Nobel-­‐Jørgensen,	
 Master	
 thesis	
 in	
 Games,	
 IT	
 University	
 of	
 Copenhagen,	
 2012	

Feedback:	
 http://blog.nobel-­‐joergensen.com/2012/03/30/webgl/	
 	

6 Conclusion	

Web Applications are becoming more and more advanced and the browser is now
considered a platform on which large and complex applications can be built. One of the
main reasons why this is possible is the evolution of JavaScript engines, which have
improved significantly over the last years. JavaScript is no longer used just for making
small visual effects on web pages, but is also used for implementing advanced client-side
application code.

With the introduction of WebGL, browsers entered a new era - hardware accelerated 3D
graphics. This means that 3D games and applications now can run in a WebGL capable
browser. The WebGL architecture also has the additional benefit that most of the heavy
computations are performed on the GPU and not in the JavaScript code.

Even though JavaScript has improved significantly, it is still not running as fast as
programs written in C++. The performance benchmarks show that JavaScript runs around
3 times more slowly in general and for 3D math operations it runs around 10 times slower.
Note that these numbers are based on micro benchmarks and may not reflect performance
of actual applications and games.

I have created the WebGL based game engine KickJS to illustrate the creation on an
engine in high performance JavaScript. The engine encapsulates much of the complexity
of 3D game development while at the same time ensuring a well-designed architecture
for games. The engine is shader based and ships with a number of built-in shaders. The
engine supports importing 3D models in Collada or Wavefront OBJ format. For building
advanced 3D scenes I have created a scene editor, which gives a visual way of working
with 3D scenes.

When benchmarking KickJS against the commercial game engine Unity (C++/C# based),
the performance of Unity was in approximately 2-4 times higher than KickJS. However
this comparison is far from equal, since Unity offers a lot of capabilities that KickJS does
not have.

Even though JavaScript has some limitations, WebGL will likely bring a lot of small and
medium sized 2D and 3D accelerated games to the Internet. This includes versions of
classic 3D game titles, which is much less resource demanding than current productions.

69 WebGL	
 based	
 3D	
 Game	
 Engine	

Morten	
 Nobel-­‐Jørgensen,	
 Master	
 thesis	
 in	
 Games,	
 IT	
 University	
 of	
 Copenhagen,	
 2012	

Feedback:	
 http://blog.nobel-­‐joergensen.com/2012/03/30/webgl/	
 	

7 Appendix	
 A:	
 performance	
 tests	
 and	
 other	
 tests	

7.1 JavaScript	
 technique	
 benchmark	

All benchmarks below can be found in the KickJS project:

/test/unittest/JSPerformanceTest.html

The benchmarks are written as YUI Unit tests which also tracks time.

7.1.1 Benchmark:	
 Typed	
 arrays	

Milliseconds for calculating the sum of an array of 10 million numbers.

	

Time:	

Chrome	
 16.0.912.77	

	
 ArraySum	
 7482.00	

Float32Sum	
 6145.00	

Float64Sum	
 5836.00	

Uint8Sum	
 5798.00	

Firefox	
 9.0.1	

	
 ArraySum	
 2983.00	

Float32Sum	
 2355.00	

Float64Sum	
 2504.00	

Uint8Sum	
 2123.00	

7.1.2 Benchmark:	
 Object	
 allocation	

Milliseconds for running 10 million reflect invocations.

See chapter 2.2.4 page 18

	

Time:	
 Performance	
 gain:	

Chrome	
 16.0.912.77	
 	
 	

testReflectNäive	
 (baseline)	
 65248.00	
 1.00	

testReflectOptimized	
 6984.00	
 9.34	

Firefox	
 9.0.1	
 	
 	

testReflectNäive	
 (baseline)	
 13689.00	
 1.00	

testReflectOptimized	
 3419.00	
 4.00	

7.1.3 Benchmark:	
 Object	
 constants	
 vs.	
 pre-­‐compiler	

Benchmarks the fps when using a pre-compiler and without a pre-compiler

Rækkenavne	
 FPS:	
 Performance	
 gain:	

Chrome	
 16.0.912.77	
 	
 	

Precompiler	
 on	
 34.54	
 1.02	

70 WebGL	
 based	
 3D	
 Game	
 Engine	

Morten	
 Nobel-­‐Jørgensen,	
 Master	
 thesis	
 in	
 Games,	
 IT	
 University	
 of	
 Copenhagen,	
 2012	

Feedback:	
 http://blog.nobel-­‐joergensen.com/2012/03/30/webgl/	
 	

Precompiler	
 off	
 34.03	
 1.00	

Firefox	
 9.0.1	
 	
 	

Precompiler	
 on	
 34.45	
 1.07	

Precompiler	
 off	
 32.27	
 1.00	

7.2 Other	
 tests	

7.2.1 JavaScript	
 V8	
 vs.	
 GCC	
 C++	

V8 version 3.9.5

gcc version 4.6.1

Ubuntu/Linaro 4.6.1-9ubuntu3

From

http://shootout.alioth.debian.org/u32/benchmark.php?test=all&lang=v8&lang2=gpp

Program Source Code CPU secs Elapsed secs Memory KB Code B ≈ CPU Load

 regex-dna

JavaScript V8 4.19 4.20 202,952 373 0% 0% 0% 100%

C++ GNU g++ 17.01 17.01 94,660 1759 0% 0% 0% 100%

 fannkuch-redux

JavaScript V8 80.52 80.55 4,756 472 0% 0% 0% 100%

C++ GNU g++ 47.85 47.86 952 1440 0% 0% 0% 100%

 binary-trees

JavaScript V8 38.79 38.83 393,256 467 0% 0% 0% 100%

C++ GNU g++ 12.93 12.95 148,448 892 0% 1% 1% 100%

 fasta

JavaScript V8 19.89 19.90 32,736 923 0% 0% 1% 100%

C++ GNU g++ 6.31 6.31 256 1266 1% 0% 0% 100%

 spectral-norm

JavaScript V8 33.13 33.15 6,884 311 0% 0% 0% 100%

71 WebGL	
 based	
 3D	
 Game	
 Engine	

Morten	
 Nobel-­‐Jørgensen,	
 Master	
 thesis	
 in	
 Games,	
 IT	
 University	
 of	
 Copenhagen,	
 2012	

Feedback:	
 http://blog.nobel-­‐joergensen.com/2012/03/30/webgl/	
 	

C++ GNU g++ 10.00 10.01 608 1044 0% 0% 1% 100%

 n-body

JavaScript V8 85.86 85.92 13,024 1287 0% 0% 0% 100%

C++ GNU g++ 20.11 20.12 284 1659 0% 0% 0% 100%

 reverse-complement

JavaScript V8 17.38 17.40 321,684 456 0% 0% 0% 100%

C++ GNU g++ 1.07 1.09 245,348 2275 3% 2% 2% 100%

 k-nucleotide

JavaScript V8 274.79 274.93 332,832 423 0% 0% 0% 100%

C++ GNU g++ 11.86 11.88 133,472 3415 0% 0% 0% 100%

 pidigits

JavaScript V8 277.87 278.07 24,088 609 0% 1% 0% 100%

C++ GNU g++ 2.74 2.74 1,680 682 0% 1% 0% 100%

7.2.2 Performance	
 gain	
 by	
 reducing	
 change	
 of	
 materials	

The goal of this test is to estimate the performance cost of changing materials.

The test case renders a number of spheres in a scene with either the same material or with
different materials – both using the same browser. From this the approximated cost of
changing a material can be seen.

72 WebGL	
 based	
 3D	
 Game	
 Engine	

Morten	
 Nobel-­‐Jørgensen,	
 Master	
 thesis	
 in	
 Games,	
 IT	
 University	
 of	
 Copenhagen,	
 2012	

Feedback:	
 http://blog.nobel-­‐joergensen.com/2012/03/30/webgl/	
 	

In this test case the performance improvement of keeping material is around 16 %, but it
fluctuates a bit.

7.2.3 Double	
 precision	
 test	

To test that the browser is actually is performing all calculations with double precision
even on data stored in 32-bit precision the following test is run:

var x = [12345678,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1];
var y = new Float32Array(x);
// if this calculation is done with only single precision, you will
// end up with only y[0], since all other values are rounded to zero
var sumY = y[0]+y[1]+y[2]+y[3]+y[4]+y[5]+y[6]+y[7]+y[8]+y[9]+y[10];
Assert.areNotEqual(sumY, y[0], "Browser does not perform calculations
with double precision");

In JavaScript the sumY is evaluated to 12345679.0.

If you perform the same calculation in C++ using floats the result is evaluated to
12345678.0

float x[11] = {12345678,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1};
float sumY = x[0]+x[1]+x[2]+x[3]+x[4]+x[5]+x[6]+x[7]+x[8]+x[9]+x[10];
printf("Float sum is : %f\n",sumY);

From this “proof” we can conclude that all calculations are done with 64 bit precisions
even though the values can be stored with only 32-bit precision. This also means that the
JavaScript engine adds a small overhead on calculations using Float32Arrays for
converting between 32-bit and 64-bit precision.

0.0	

10.0	

20.0	

30.0	

40.0	

50.0	

60.0	

70.0	

80.0	

90.0	

500	
 1000	
 1500	
 2000	
 2500	
 3000	
 3500	
 4000	
 4500	
 5000	

M
ill
is
ec
on

ds
	

Number	
 of	
 primi`ves	

Cost	
 of	
 changing	
 material	

Different	
 material	

Same	
 material	

73 WebGL	
 based	
 3D	
 Game	
 Engine	

Morten	
 Nobel-­‐Jørgensen,	
 Master	
 thesis	
 in	
 Games,	
 IT	
 University	
 of	
 Copenhagen,	
 2012	

Feedback:	
 http://blog.nobel-­‐joergensen.com/2012/03/30/webgl/	
 	

7.2.4 Teapot	
 storage:	
 JSON	
 vs.	
 Binary	

A model of the Utah teapot with normals, UVs and texture coordinates are stored. The
model has 792 vertices.

 JSON KickJS binary Reduction

No compression 116 KB 57 KB 51%

Zip compression 22 KB 14 KB 37%

74 WebGL	
 based	
 3D	
 Game	
 Engine	

Morten	
 Nobel-­‐Jørgensen,	
 Master	
 thesis	
 in	
 Games,	
 IT	
 University	
 of	
 Copenhagen,	
 2012	

Feedback:	
 http://blog.nobel-­‐joergensen.com/2012/03/30/webgl/	
 	

8 Appendix	
 B:	
 Example	
 applications	

In this appendix I will describe some of the examples that I have implemented using the
KickJS engine.

8.1 Snake	

Snake is a very simple game where two players compete in collecting most dots while
avoiding crashing into walls or snakes.

Image 11 KickJS Snake game

The game is modelled with a simple component based structure, with one game game-
controller responsible for running the gameplay:

8.2 Model	
 viewer	

The model viewer was developed as a test-tool for importing Collada and Wavefront OBJ
files into KickJS. The functionality has been extended so that the tool is now able to also
export JSON files and binary KickJS models.

75 WebGL	
 based	
 3D	
 Game	
 Engine	

Morten	
 Nobel-­‐Jørgensen,	
 Master	
 thesis	
 in	
 Games,	
 IT	
 University	
 of	
 Copenhagen,	
 2012	

Feedback:	
 http://blog.nobel-­‐joergensen.com/2012/03/30/webgl/	
 	

The tool also supports loading PNG and JPEG images, which will be used as textures in
all materials of the model.

The tool automatically rotates the camera around the origin, but the user can control the
camera rotation using left mouse drag and zoom using the mouse scroll wheel.

The tool contains tree built-in models: A duck, a cube and a teapot. The default texture is
the yellow duck texture.

Image 12 Model viewer

8.3 Cloth	
 simulation	

The cloth simulation is a port of the tutorial “Mosegaards Cloth Simulation Coding
Tutorial”42 – a C++/OpenGL introduction to cloth simulation.

The code is translated to JavaScript as closely as possible. This unfortunately has the
downside that the simulation allocates memory in every frame, which is one of the reason
why the code runs much slower that the C++ equivalent.

42 http://cg.alexandra.dk/2009/06/02/mosegaards-cloth-simulation-coding-tutorial/

76 WebGL	
 based	
 3D	
 Game	
 Engine	

Morten	
 Nobel-­‐Jørgensen,	
 Master	
 thesis	
 in	
 Games,	
 IT	
 University	
 of	
 Copenhagen,	
 2012	

Feedback:	
 http://blog.nobel-­‐joergensen.com/2012/03/30/webgl/	
 	

Image 13 Cloth simulation in KickJS

The memory allocation issue could be fixed, but the code would then be harder to read
and understand.

To get good performance in WebGL I believe that the computation should be moved
from the CPU (JavaScript) to the GPU (GLSL).

8.4 Video	
 ASCII	
 art	

Shaders can be used for many other things than shading 3D geometry. In this example I
have created a post processing effect that adds a post-effect to a video and show it on the
screen. The post effects transforms the videos to ASCII art by first pixelate the content
and then choose the best ASCII character for each pixel.

Image 14 Video ASCII shader

The program grabs the video frame and updates an internal WebGL texture with it every
frame. Then the texture is rendered using a screen-filling quad with the ASCII shader.

77 WebGL	
 based	
 3D	
 Game	
 Engine	

Morten	
 Nobel-­‐Jørgensen,	
 Master	
 thesis	
 in	
 Games,	
 IT	
 University	
 of	
 Copenhagen,	
 2012	

Feedback:	
 http://blog.nobel-­‐joergensen.com/2012/03/30/webgl/	
 	

9 Appendix	
 C:	
 Documentation	

The full documentation of each class is available online:

http://www.kickjs.org/api/

Class name Description
KICK.core.ChunkData Chunk data format object
KICK.core.Config The global configuration of the engine.

Cannot be changed during runtime.
KICK.core.Constants This class contains references to WebGL

constants.
KICK.core.Engine Game engine object
KICK.core.EventQueue Event queue let you schedule future events

in the game engine.
KICK.core.KeyInput This class encapsulates keyboard input

and makes it easy to test for key input.
KICK.core.MouseInput Provides an easy-to-use mouse input

interface.
KICK.core.Project A project is a container of all resources

and assets used in a game.
KICK.core.ProjectAsset A project asset is an object that can be

serialized into a project and restored at a
later state.

KICK.core.ResourceDescriptor A project is a container of all resources
and assets used in a game.

KICK.core.ResourceLoader Responsible for loading of resources.
KICK.core.ResourceProvider Responsible for creating or loading a

resource using a given URI
KICK.core.Time A global timer object
KICK.core.Util Utility class for miscellaneous functions.
KICK.importer.ColladaImporter Imports a Collada meshes into a scene
KICK.importer.ObjImporter Imports a Wavefront OBJ mesh into a

scene.
KICK.material.GLSLConstants Contains GLSL source code constants
KICK.material.Material Material configuration
KICK.material.Shader GLSL Shader object which encapsulates a

GLSL shader programs and WebGL
states.

KICK.math.aabb Axis-Aligned Bounding Box.
KICK.math.mat3 3x3 Matrix
KICK.math.mat4 4x4 Matrix
KICK.math.quat4 Quaternions
KICK.math.vec2 2 dimensional vector
KICK.math.vec3 3 dimensional vector
KICK.math.vec4 4 dimensional vector

78 WebGL	
 based	
 3D	
 Game	
 Engine	

Morten	
 Nobel-­‐Jørgensen,	
 Master	
 thesis	
 in	
 Games,	
 IT	
 University	
 of	
 Copenhagen,	
 2012	

Feedback:	
 http://blog.nobel-­‐joergensen.com/2012/03/30/webgl/	
 	

Class name Description
KICK.mesh.Mesh A Mesh object allows you to bind and

render a MeshData object
KICK.mesh.MeshData Mesh data class. Allows for modifying

mesh object easily. This is a pure data
class

KICK.mesh.MeshFactory Class responsible for creating Mesh
objects

KICK.renderer.ForwardRenderer Forward renderer
KICK.renderer.NullRenderer Does not render any components
KICK.renderer.Renderer Defines interface for render classes.
KICK.scene.Camera Creates a game camera
KICK.scene.Component This class only specifies the interface of a

component.
KICK.scene.
 ComponentChangedListener

Specifies the interface for a component
listener.

KICK.scene.GameObject Game objects. (Always attached to a given
scene).

KICK.scene.Light A light object. (Directional, ambient or
point light)

KICK.scene.MeshRenderer Renders a mesh
KICK.scene.Scene A scene objects contains a list of game

objects
KICK.scene.SceneLights Data structure used pass light information
KICK.scene.Transform Position, rotation and scale of a game

object.
KICK.texture.MovieTexture A movie texture associated with a video

element will update the content every
frame.

KICK.texture.RenderTexture Render texture (used for camera's render
target)

KICK.texture.Texture Encapsulate a texture object and its
configuration

79 WebGL	
 based	
 3D	
 Game	
 Engine	

Morten	
 Nobel-­‐Jørgensen,	
 Master	
 thesis	
 in	
 Games,	
 IT	
 University	
 of	
 Copenhagen,	
 2012	

Feedback:	
 http://blog.nobel-­‐joergensen.com/2012/03/30/webgl/	
 	

10 Appendix	
 D:	
 UML	
 Class	
 diagram	
 of	
 KickJS	

The following contains the main classes of KickJS:

80 WebGL	
 based	
 3D	
 Game	
 Engine	

Morten	
 Nobel-­‐Jørgensen,	
 Master	
 thesis	
 in	
 Games,	
 IT	
 University	
 of	
 Copenhagen,	
 2012	

Feedback:	
 http://blog.nobel-­‐joergensen.com/2012/03/30/webgl/	
 	

11 Appendix	
 E:	
 Glossary	

AAA game Big budget commercial game
Application
framework

A framework is a reusable, ``semi-complete'' application that can be
specialized to produce custom applications43. Using a framework
has the benefits of44:

• Inversion of control: The framework is responsible for flow
of control. A program using the framework responds to
events triggered by the framework.

• Reusability: A framework implements common behaviour
• Extensibility: Allowing customization through inheritance
• Modularity: Encapsulating its implementation and exposes

an API for the program

Chrome Frame A plugin for Internet Explorer that embeds the full Google Chrome
browser inside on web pages that contains a special meta tag. This
allows usage of some of the more advanced features of Chrome,
such as Native Client and WebGL applications. The plugin can be
installed on any windows machine even for users without
administrator access.

Closure [Crockford08]: “[Closure is] inner functions get access to the
parameters and variables of the functions they are defined within”.
Note that inner functions can have longer lifetime than outer
functions.

ECMAScript The official name for standardized JavaScript
Game engine A framework used for creating games. A game engine gives a

separation between engine logic, such as rendering systems, sound
system, resource management and game logic such as rules and
game specific code. A game engine usually consists of several sub-
modules each with a single responsibility, such as rendering, event
management, input management, sounds, etc.

GLSL OpenGL Shader Language, used for programming the GPU to
perform shading operations. In WebGL there exists two types of
shaders: vertex shaders (transforms vertices into clip-space) and
fragment shaders (defines the pixel colour).

Google App
Engine

A software stack that allows developers to create web applications
that runs on Google hosted webservers. The goals of Google App
Engine are: Easy to build, easy to maintain, and easy to scale

HTML5 An umbrella specification that covers many parts such as HTML
based markup, Video capabilities, Audio capabilities, Canvas 2D
API and Web Storage API. The specification is not approved yet,
but many browsers implements large parts of the standard.

43 Johnson88
44 Fayad97

81 WebGL	
 based	
 3D	
 Game	
 Engine	

Morten	
 Nobel-­‐Jørgensen,	
 Master	
 thesis	
 in	
 Games,	
 IT	
 University	
 of	
 Copenhagen,	
 2012	

Feedback:	
 http://blog.nobel-­‐joergensen.com/2012/03/30/webgl/	
 	

IEWebGL A traditional plugin that adds WebGL functionality
JSON JSON (JavaScript Object Notation) is a lightweight data-interchange

format. The format uses two structures: key/value objects and
ordered lists. Values can be strings, numbers, objects, arrays, true,
false or null.

Library Provides implementation of common function for modular
programming

NodeJS Node.js is a platform built on Chrome's JavaScript runtime for easily
building fast, scalable network applications.

Sandbox Secure environment programs can run in without restricted access to
file system, memory and other resources.

Typed Arrays A new way JavaScript can work with binary data. It allows creation
of a binary array buffer and seeing this array buffer through array
buffer views of a certain type (such as 32-bit float or unsigned
integer 8 bit)

Web application An application created in HTML, JavaScript and CSS, hosted on a
webserver and accessed over the Internet using a web browser.

XML Extensible Markup Language, data definition language that is
written using text based markup.

82 WebGL	
 based	
 3D	
 Game	
 Engine	

Morten	
 Nobel-­‐Jørgensen,	
 Master	
 thesis	
 in	
 Games,	
 IT	
 University	
 of	
 Copenhagen,	
 2012	

Feedback:	
 http://blog.nobel-­‐joergensen.com/2012/03/30/webgl/	
 	

12 Bibliography	

Books:

Crockford08 Crockford, Douglas, 2008, “JavaScript: The Good Parts”. Yahoo
Press

Gove11 Gove, Darryl, 2011, “Multicore Application Programming – for
Windows, Linux, and Oracle Solaris”, Addison Wesley

Gregory09 Gregory, Jason, 2009, “Game Engine Architecture”. A K Peters
Larman97 Larman, Craig, 1997, “Applying UML and patterns: an introduction

to object-oriented analysis and design”. Prentice Hall PTR
Pharr05 Pharr, Matt, 2005, “GPU Gems 2: Programming Techniques for

High-performance Graphics and General-purpose Computation”,
Addison Wesley

Stefanov10 Stefanov, Stoyan, 2010, “JavaScript Patterns”. O'Reilly Media

Articles:

Fayad97 Fayad, M., Schmidt, D. C., 1997, “Object-Oriented Application
Frameworks” Communications of the ACM, Special Issue on Object-
Oriented Application Frameworks, Vol. 40, No. 10, October 1997.
http://www1.cse.wustl.edu/~schmidt/CACM-frameworks.html

Johnson88 Ralph Johnson and Brian Foote. ``Designing Reusable Classes.''
Journal of Object-Oriented Programming. SIGS, 1, 5 (June/July.
1988), 22-35.

Llopis09 Llopis, Noel, “Data-Oriented Design” Game Developer, Vol 16 No 8,
September 2009

Blogs and web articles:

Egorov11 Egorov , Vyacheslav , “Understanding V8”, June 11, 2011,
Nodecamp.eu
http://s3.mrale.ph/nodecamp.eu/

Garrett05 Garrett, J.J. “Ajax: A New Approach to Web Applications”, February
18, 2005
http://www.adaptivepath.com/ideas/ajax-new-approach-web-applications

Larson-Green11 Larson-Green, J., corporate vice president, Windows Experience
“Previewing 'Windows 8'”, Microsoft News Center, June 1, 2011
http://www.microsoft.com/presspass/features/2011/jun11/06-01corporatenews.aspx

Mandelin11 Mandelin, Dave, “Know Your Engines - How to Make Your
JavaScript Fast”, June 15, 2011, O’Reilly Velocity
http://people.mozilla.com/~dmandelin/KnowYourEngines_Velocity2011.pdf

Meisinger10 Meisinger, G., “Why I switched from component-based game engine
architecture to functional reactive programming”, August 16, 2010
http://lambdor.net/?p=171

Metzger11 Metzger,H., “Netscape history”, October 30, 2011
http://www.holgermetzger.de/Netscape_History.html

83 WebGL	
 based	
 3D	
 Game	
 Engine	

Morten	
 Nobel-­‐Jørgensen,	
 Master	
 thesis	
 in	
 Games,	
 IT	
 University	
 of	
 Copenhagen,	
 2012	

Feedback:	
 http://blog.nobel-­‐joergensen.com/2012/03/30/webgl/	
 	

Rauschmayer11 Rauschmayer, Dr. A., “JavaScript values: not everything is an
object”, Match 14, 2011
http://www.2ality.com/2011/03/javascript-values-not-everything-is.html

Stroustrup11 Stroustrup, B., “Bjarne Stroustrup's C++ Style and Technique FAQ”,
December 17, 2011
http://www2.research.att.com/~bs/bs_faq2.html#finally

Webber11 Webber, Joel, “Angry Birds on HTML5”, October 10 2011, GOTO
Conference,
http://www.infoq.com/presentations/Angry-Birds-on-HTML5

West07 West, M., “Evolve Your Hiearchy – Refactoring Game Entities with
Components”, 1st of May, 2007
http://cowboyprogramming.com/2007/01/05/evolve-your-heirachy/

Winokur11 Winokur, D., vice president & general manager, interactive
development at Adobe
“Flash to Focus on PC Browsing and Mobile Apps; Adobe to More
Aggressively Contribute to HTML5”, Adobe blog, November 9, 2011
http://blogs.adobe.com/conversations/2011/11/flash-focus.html

Specifications:

Ecma11 “ECMAScript Language Specification - ECMA-26 - 5.1 Edition”,
June 2011
http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-262.pdf

UML11 “OMG Unified Modeling LanguageTM (OMG UML), Superstructure
- Version 2.4.1”, June 8, 2011
http://www.omg.org/spec/UML/2.4/Superstructure

Webgl11 Khronos Press release: “Khronos Releases Final WebGL 1.0
Specification”, March 3, 2011
http://www.khronos.org/news/press/khronos-releases-final-webgl-1.0-specification

